Highly drug resistant, virulent strain of Pseudomonas aeruginosa arises in Ohio

August 11, 2014

A team of clinician researchers has discovered a highly virulent, multidrug resistant form of the pathogen, Pseudomonas aeruginosa, in patient samples in Ohio. Their investigation suggests that the particular genetic element involved, which is still rare in the United States, has been spreading heretofore unnoticed, and that surveillance is urgently needed. The research is published ahead of print in Antimicrobial Agents and Chemotherapy.

The P. aeruginosa contained a gene for a drug resistant enzyme called a metallo beta-lactamase. Beta-lactamases enable broad-spectrum resistance to beta-lactam antibiotics, including carbapenems, cephalosporins, and penicillins, because they can break the four atom beta-lactam ring, a critical component of these antibiotics' structure.

The initial isolate of metallo-beta-lactamase-producing P. aeruginosa was identified in March, 2012, in a foot wound of a 69-year-old man with type 2 diabetes living in a long-term care facility. During 2012-2013, the investigators identified this highly antibiotic-resistant infection in six other patients. One of the seven patients subsequently died of the infection.

The cases are linked epidemiologically via admission to a community hospital and residence in long-term care facilities in Northeast Ohio. The one exception was a patient from Qatar who was transferred into a tertiary medical center in Ohio, says lead author Federico Perez, of the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.

The investigators subsequently found that the metallo beta-lactamase was contained within an integron, a genetic element that can jump from one species of bacterium to another, can reside on plasmids or within the chromosomes, and is known for being able to contain multiple antibiotic resistance genes.

This particular metallo beta-lactamase, verona integron-encoded metallo beta-lactamse (VIM), is widespread globally, if not in the US. "VIM enzymes confer resistance to imipenem and all other beta-lactams," says Perez. "They are not inhibited by metallo beta-lactamase inhibitors."

"Alarmingly, the [extensively drug-resistant] phenotype expressed by some of these isolates precluded any reliable antibiotic treatment since they even displayed intermediate resistance to colistin, an 'agent of last resort'," the researchers write. "Patients who were affected had multiple comorbidities, endured prolonged colonization, required long-term care and, in one instance had a lethal outcome from a bloodstream infection."

On top of everything else, genomic sequencing and assembly showed that the integron was part of a novel 35 kilobase region that included a transposon (another mobile genetic element) and the so-called Salmonella Genomic Island 2 (SGI2). That indicated that a recombination event had occurred between Salmonella and P. aeruginosa, contributing even more resistance genes to the latter.

"This is the first description of genetic exchange of a large mobile element--the Salmonella Genome Island--and resistance genes between P. aerugenosa and Salmonella, says Perez. "This movement of genetic material creates concern that metallo beta-lactamases will disseminate rapidly in these enteric pathogens that are also very invasive. We are also concerned about the possibility of enhanced virulence."
-end-
The manuscript can be found online at http://bit.ly/asmtip0814a. The final version of the article is scheduled for the October 2014 issue of Antimicrobial Agents and Chemotherapy.

Antimicrobial Agents and Chemotherapy is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

American Society for Microbiology

Related Salmonella Articles from Brightsurf:

Sneaky salmonella finds a backdoor into plants
Researchers have discovered that bacteria such as salmonella, E.coli and listeria have a backdoor to take advantage of humans' reliance on leafy greens for a healthy diet.

Re-trafficking proteins to fight Salmonella infections
New study demonstrates how monitoring all cellular proteins over time and space can improve our understanding of host-pathogen interactions.

Researchers find one-two punch may help fight against Salmonella
Researchers found that dephostatin does not kill Salmonella or stop it from growing.

Food scientists slice time off salmonella identification process
Researchers from Cornell University, the Mars Global Food Safety Center in Beijing, and the University of Georgia have developed a method for completing whole-genome sequencing to determine salmonella serotypes in just two hours and the whole identification process within eight hours.

The discovery of ancient Salmonella
Oldest reconstructed bacterial genomes link agriculture and herding with emergence of new disease.

The function of new microRNAs are identified in Salmonella and Shigella infections
The research, published in Nature Microbiology, could help the search for more effective medicine and delves deeper into understanding the role of microRNAs in gene expression.

Salmonella the most common cause of foodborne outbreaks in the European Union
Nearly one in three foodborne outbreaks in the EU in 2018 were caused by Salmonella.

The nature of salmonella is changing -- and it's meaner
Salmonella is acting up in Michigan, and it could be a model for what's happening in other states, according to a new Michigan State University study.

Salmonella -- how the body fights back
New research shows how our immune system fights back against Salmonella infection.

For salmonella detection, genomic tool emerges as a key
The world's food supply will become safer as the food industry shifts to high-resolution, whole-genome sequencing -- which examines the full DNA of a given organism all at once.

Read More: Salmonella News and Salmonella Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.