Autophagy under the microscope as never before

August 11, 2016

We don't tend to wrap our recycling waste in bubble wrap but that's essentially what cells do during the cellular recycling process called autophagy. Using the live imaging capabilities at the Babraham Institute, Institute researchers and their collaborators at Carl Zeiss Microscopy, Munich, and the Francis Crick Institute, London, have viewed the earliest stages of this encapsulation and recycling process in super resolution to reveal what's happening in unprecedented molecular detail. Their research is published today in the journal Nature Communications.

Derived from the Greek and meaning 'self-eating', autophagy describes a process whereby cellular contents are collected and recycled into new molecules and cellular structures; a process of reclaiming the unwanted or damaged and using them to create something useful for the cell. Autophagy is fundamental to the function of our bodies. As the clean-up mechanism for cellular debris, loss of efficiency or glitches in this process are associated with ageing and ageing-related diseases such as Alzheimer's, rheumatoid arthritis and cancer.

The researchers focused on determining the origin and formation of a structure only seen at the very start of the autophagy process but which gives rise to the main structure (autophagosome; the cellular 'bubble wrap') that envelops the content targeted for degradation. Due to its short-lived nature, this transient structure was difficult to characterise. The researchers jointly developed a new comprehensive imaging-based approach for observing autophagy-related structures. At the Babraham Institute this was achieved using live imaging followed by dStorm (direct Stochastic Optical Reconstruction Microscopy). At the Francis Crick Institute in London and the Zeiss Microscopy Labs in Munich, the researchers used a method called FIB-SEM (Focused Ion Beam Scanning Electron Microscopy). By combining the information gathered from these two methods, the researchers were able to identify how the first autophagy structure forms and clarify the protein and membrane associations leading to its development into a fully-fledged autophagosome.

Dr Nicholas Ktistakis, group leader in the Signalling research programme at the Babraham Institute and lead senior author, said: "By combining live imaging with cutting-edge super resolution microscopy techniques, we have been able to characterise the site of autophagy initiation and observe the physical and functional interactions between the proteins involved in autophagy. This has uncovered a new level of detail of the earliest stages of autophagy and provides a general protocol for this type of analysis in other areas of cell biology.

"Knowing more about this process increases our ability to find ways to manipulate or boost it for future therapeutic benefit."
This work was supported by the Biotechnology and Biological Sciences Research Council.

Babraham Institute

Related Autophagy Articles from Brightsurf:

Surprising insights into the role of autophagy in neuron
Autophagy protects our neurons in the brain, but for entirely different reasons than previously assumed, as researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Charité in Berlin have shown.

Revealing the identity of the last unknown protein of autophagy
Japanese scientists discovered that Atg9, one of the proteins that function to mediate autophagy, has phospholipid-translocation activity (the lipid scramblase activity) between the two layers of the lipid bilayer?and elucidated that the protein's activity brings about autophagosome membrane expansion.

Lipids, lysosomes, and autophagy: The keys to preventing kidney injury
Lysosomes are cellular waste disposal organelles containing potent enzymes that cause cellular damage if they leak out of ruptured lysosomes.

How zika virus degrades essential protein for neurological development via autophagy
Researchers at the University of Maryland (UMD) shed new light on how Zika virus hijacks our own cellular machinery to break down an essential protein for neurological development, getting it to ''eat itself''.

Autophagy: the beginning of the end
Autophagy, from the Greek for 'self-eating', is an essential process that isolates and recycles cellular components under conditions of stress or when resources are limited.

Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Institute of Microbial Chemistry investigated 'ER-phagy,' the degradation mechanism of the endoplasmic reticulum (ER), an important organelle with multiple biologically necessary functions like the synthesis of proteins and lipids.

How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.

Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.

Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.

Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.

Read More: Autophagy News and Autophagy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to