Nav: Home

X-rays indicate that water can behave like a liquid crystal

August 11, 2020

Scientists at Stockholm University have discovered that water can exhibit a similar behavior like a liquid crystal when illuminated with laser light. This effect originates by the alignment of water molecules, which exhibit a mixture of low- and high-density domains that are more or less prone to alignment. The results, reported in Physical Review Letters on the 11th of August 2020, are based on a combination of experimental studies using X-ray lasers and molecular simulations.

Liquid crystals were considered a mere scientific curiosity when they were first discovered in 1888. Over 100 years later, they are one of the most widely used technologies, present in digital displays (LCDs) of watches, TVs and computer screens. Liquid crystals work by applying an electric field, which makes the neighboring molecules of a liquid align, in a way that resembles a crystal. Water too can be distorted towards a liquid crystal, when illuminated with laser light. It is known that the electric field of the laser can align the water molecules for less than a billionth of a second. Can this discovery have future technological applications?

An international team of researchers at the Physics Department of Stockholm University carried out experiments at Japan's X-ray Free-electron laser SACLA and probed for the first time the dynamics of transiently oriented molecules using X-ray pulses. This technique, relies on aligning the molecules with a laser pulse (with wavelength λ = 800nm) and probing the alignment with X-ray pulses, which allow to see in real time the changes in the structure on a molecular level. By varying the time between the laser and the X-ray pulses, the researchers were able to resolve the aligned state, which lives only for 160 fs.

"It is known that the water molecules are aligned due to the polarization of the laser pulse" explains Kyung Hwan Kim, former researcher at Stockholm University and currently assistant professor at POSTECH University in Korea, "it is a unique capability however to be able to use X-ray lasers to see the molecular alignment in real time."

"X-rays are perfect for probing molecules because their wavelength matches the molecular lengthscales" says Dr. Alexander Spa?h, former PhD student in Physics at Stockholm University, and currently being a postdoc at Stanford University. "I really enjoy having the opportunity to use state-of-the-art X-ray facilities to investigate fundamental questions that could have future technological applications."

The experiments were well reproduced by molecular simulations, which gave an insight to the underlying alignment mechanism. By assuming that water behaves like a two-state liquid, consisting of high- and low-density liquid (HDL and LDL) domains, the researchers discovered that each domain shows a different tendency to align.

"Water molecules in the LDL regions have stronger hydrogen bond network, which makes the molecules easier to respond to the strong laser field" explains Anders Nilsson, professor in Chemical Physics at Stockholm University. "It would be fascinating to measure the lifetime of the molecular alignment in the supercooled regime, where everything is expected to slow down dramatically".

"Being able to understand water on a molecular level by watching the changes of the hydrogen-bond network, can play a major role in biological activity" says Fivos Perakis, assistant professor in Physics at Stockholm University. "I am curious to see whether the observed alignment can lead to technological applications in the future, for example in connection to water cleaning and desalination".
-end-
These studies were led by Stockholm University and involve a collaboration including the POSTECH, University of Venice, KTH Royal Institute of Technology in Stockholm, Berkeley University, Uppsala University, MIT, SLAC National Accelerator Laboratory, Japan Synchrotron Radiation Research Institute and the University of Tokyo.

The other participants from Stockholm University involved in the study are Harshad Pathak, Stefano Bonetti, Katrin Amann-Winkel, Daniel Mariedahl and Daniel Schlesinger.

Original article:

Read the study "Anisotropic x-ray scattering of transiently oriented water" by K.H.Kim et al. https://journals.aps.org/prl/accepted/8b073Y24E3c17375a31986c9a44f756b2fe299b4d

DOI: 10.1103/PhysRevLett.125.076002

Contact information:

Assistant Professor Fivos Perakis , f.perakis@fysik.su.se, phone: ++46855378591

Assistant Professor Kyung Hwan Kim, kimkyunghwan@postech.ac.kr

Professor Anders Nilsson, andersn@fysik.su.se

Dr. Alexander Spa?h, spaeh@stanford.edu

Stockholm University

Related Water Molecules Articles:

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.
How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.
Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.
'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
More Water Molecules News and Water Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.