Physicists cast doubt on neutrino theory

August 11, 2020

University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

UC College of Arts and Sciences associate professor Alexandre Sousa and assistant professor Adam Aurisano took part in an experiment at the Fermi National Accelerator Laboratory in search of sterile neutrinos, a suspected fourth "flavor" of neutrino that would join the ranks of muon, tau and electron neutrinos as elementary particles that make up the known universe.

Finding a fourth type of neutrino would be huge, Sousa said. It would redefine our understanding of elementary particles and their interactions in what's known as the Standard Model.

Researchers in two experiments called Daya Bay and MINOS+ collaborated on complementary projects in an intense effort to find sterile neutrinos using some of the world's most advanced and precise tools.

"We apparently don't see any evidence for them," Aurisano said.

The study was published in the journal Physical Review Letters and was featured in Physics Magazine, published by the American Physical Society.

"It's an important result for particle physics," Sousa said. "It provides an almost definitive answer to a question that has been lingering for over 20 years."

The research builds on previous studies that offered tantalizing possibilities for finding sterile neutrinos. But the new results suggest sterile neutrinos might not have been responsible for the anomalies researchers previously observed, Aurisano said.

"Our results are incompatible with the sterile neutrino interpretation of the anomalies," he said. "So these experiments remove a possibility - the leading possibility - that oscillations into sterile neutrinos solely explain these anomalies."

Neutrinos are tiny, so tiny they can't be broken down into something smaller. They are so small that they pass through virtually everything - mountains, lead vaults, you - by the trillions every second at virtually the speed of light. They are generated by the nuclear fusion reactions powering the sun, radioactive decays in nuclear reactors or in the Earth's crust, and in particle accelerator labs, among other sources.

And as they travel, they often transition from one type (tau, electron, muon) to another or back.

But theorists have suggested there might be a fourth neutrino that interacts only with gravity, making them far harder to detect than the other three that also interact with matter through the weak nuclear force.

The experiment Daya Bay is composed of eight detectors arrayed around six nuclear reactors outside Hong Kong. MINOS+ uses a particle accelerator in Illinois to shoot a beam of neutrinos 456 miles through the curvature of the Earth to detectors waiting in Minnesota.

"We would all have been absolutely thrilled to find evidence for sterile neutrinos, but the data we have collected so far do not support any kind of sterile neutrino oscillation," said Pedro Ochoa-Ricoux, associate professor at the University of California, Irvine.

Researchers expected to see muon neutrinos seemingly vanish into thin air when they transitioned into sterile neutrinos. But that's not what happened.

"We expected to see muon neutrinos oscillating to sterile neutrinos and disappear," Aurisano said.

Despite the findings, Aurisano said he thinks sterile neutrinos do exist, at least in some form.

"I think sterile neutrinos are more likely than not to exist at high energies. At the very beginning of the universe, you'd expect there would be sterile neutrinos," he said. "Without them, it's hard to explain aspects of neutrino mass."

But Aurisano is skeptical about finding light sterile neutrinos that many theorists expected them to find in the experiments.

"Our experiment disfavors light or lower-mass sterile neutrinos," he said.

Sousa said some of his research was truncated somewhat by the global COVID-19 pandemic when Fermilab shut down accelerator operations months earlier than expected. But researchers continued to use massive supercomputers to examine data from the experiments, even while working from home during the quarantine.

"It's one of the blessings of high energy physics," Aurisano said. "Fermilab has all the data online and the computing infrastructure is spread out around the world. So as long as you have the internet you can access all the data and all the computational facilities to do the analyses."

Still, Aurisano said it takes some adjusting to work from home.

"It was easier when I had dedicated hours at the office. It's a challenge sometimes to work from home," he said.

University of Cincinnati

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to