Researchers explore pollen fertilization mechanisms

August 11, 2020

A group of researchers from four countries, including Brazil, have worked out exactly how a pollen tube, the plant cell that emerges from a grain of pollen, grows up to a thousand-fold to reach an ovule deep inside the flower. The key to this growth is an inflow and outflow of protons that creates electrical activity at the cell membrane and makes the cell grow. The results of the study will help scientists understand an array of related phenomena, such as seed production, the growth of fungi, and even how neurons develop.

The study was supported by FAPESP. The findings are described in a paper authored by researchers affiliated with institutions in Brazil, Denmark, Portugal and the United States and published in Nature Communications.

“A grain of pollen consists of a single cell. When it comes into contact with the female sex organ on the surface of a flower, it grows at a very high speed, forming what we call a pollen tube, until it reaches the base of the flower’s ovary and discharges the sperm cells. How this happens was very poorly understood until now” according to Maria Teresa Portes, who conducted the research during a postdoctoral fellowship at the University of Maryland in the US.

Scientists have long been intrigued by the exceptionally fast pace of pollen tube growth, which is the fastest type of cell growth observed among all living organisms. Its elongation originates at the tip of the tube and is termed tip growth. The species used in the study was Arabidopsis thaliana (thale cress), a small flowering plant native to Eurasia and Africa. It belongs to the mustard family (Brassicaceae) and is widely chosen as a model organism because of its usefulness for genetic experiments. Its pollen tube grows as much as 3 mm per day.

The researchers produced mutant varieties of the plant in the laboratory in which some genes were modified. They discovered that inactivating three AHA genes inhibited pollen tube growth. AHA refers to the autoinhibited H+-ATPase gene family.

In the mutant plants, only the eggs closest to the surface were fertilized. As a result, the plants produced only 5% of the normal number of seeds.

In a series of experiments, the researchers found that the proteins expressed from these genes acted as proton pumps, injecting protons from the environment to make the pollen tube cell more acidic and promote faster growth.

Proton pumps regulate the electrochemical gradient that energizes the nutrient uptake system and acid growth mechanism of plant cells.

“We wanted to understand how the cell organizes this growth process. Proton distribution in the ion gradient was found to be non-uniform, with protons bunching at the tip of the tube, and there are also gradients of molecules such as calcium and actin,” said Daniel Santa Cruz Damineli, another coauthor of the study who is currently a postdoctoral fellow in the University of São Paulo’s Medical School (FM-USP) in Brazil with a scholarship from FAPESP.

From seeds to neurons

Among several potential developments arising from the study’s findings is a deeper understanding of how seeds are produced, so that they can, in theory, be used to create improved varieties of food crops such as legumes and cereals.

“We don’t know everything about how the pollen tube is guided and how a plant’s male and female organs communicate,” Portes said. “This is a major research interest and could culminate in seed production. Plant growth necessarily involves this mechanism, which we’re just starting to understand more deeply.”

This knowledge should also help scientists understand tip-growth in other cells or organisms, such as that of fungal hyphae, neurons and cancer cells.

“Biologically speaking, how tip growth is orchestrated is poorly understood. Now we can study it further,” Damineli said.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.