Emory researchers map structure of anti-cancer molecule

August 12, 2004

Scientists at Emory University, in collaboration with researchers at three national laboratories, have solved the structural puzzle of how an emerging class of promising cancer drugs work to halt cell division. The discovery potentially opens the door to the creation of more effective cancer treatments.

"Uncovering and mapping the structure of this model system will assist scientists around the world in creating new compounds that hopefully will lead to new cancer drugs," says researcher Jim Snyder, an Emory chemist and director of biostructural research at the university.

The results, reported in the Aug. 6 issue of the journal Science, include the first three-dimensional, atomic-scale images of the binding site where one of the drugs, epothilone A, interacts with a key protein controlling cell division.

The researchers have now examined two drug families - the epothilones and taxanes, which include the anti-cancer drug Taxol already in use. Both drugs work to halt the division of cancer cells by binding to the same site on a protein called tubulin that is involved in cell division. Tubulin is the major component of microtubules, the hollow cylinders that serve as a skeletal system for cells and a scaffold for chromosomes in the dividing cell. When epothilones or taxanes bind to tubulin, the protein loses its flexibility and the microtubules can no longer disassemble, halting cell division.

To build the model, the Emory team used diffraction data gathered from an electron microscope at Lawrence Berkeley National Laboratory. The data allowed them to "see" the differences in the atomic positions associated with the two drugs that explained their activities within a cell. The work involved using computers to test thousands of possible solutions against the diffractions along with extensive biological data regarding drug activity.

Jim Nettles, an Emory doctoral candidate in molecular and systems pharmacology who is first author of the paper, says the research "was a highly collaborative project that crossed formal disciplines and brought together researchers with strong backgrounds in chemistry, biology, physics and pharmacology, which was essential for putting the pieces of this puzzle together." He says that in addition to this basic research, it is hoped that the model system also will become useful as a clinical tool for pharmacogenetic profiling - matching the best drug for a given patient.
-end-
Other collaborators included researchers at the U.S. Department of Energy's Brookhaven National Laboratory and the structural biology laboratory at the National Institute of Environmental Health Sciences.

Emory University is known for its demanding academics, outstanding undergraduate college of arts and sciences, highly ranked professional schools and state-of-the-art research facilities. For more than a decade Emory has been named one of the country's top 25 national universities by U.S. News & World Report. In addition to its nine schools, the university encompasses The Carter Center, Yerkes National Primate Research Center and Emory Healthcare, a comprehensive metropolitan health care system.

Emory University Health Sciences Center

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.