UC solar house serves as a summer laboratory for alternative-energy technologies

August 12, 2008

Cost savings, energy sources, appliances and more are all subjects for ongoing experimentation this summer in the University of Cincinnati solar house.

The house, constructed last year and ultimately displayed in Washington, D.C., received national attention from outlets like National Public Radio, BusinessWeek magazine and many others in 2007.

And now, the house is - appropriately enough - being recycled for additional use as a learning lab by UC faculty and students representing the university architecture, engineering and physics programs. Ongoing experiments in the house includeHot water as a giant battery

This summer's focus on hot water as a power source stems from the house's unique design elements. One of these is a patio shade wall consisting of 120 evacuated tubes. The tubes contain water that, when heated by the sun, translate into usable energy - a lot of usable energy.

Last year, hot-water derived energy powered the air conditioning. But, it could additionally do much more, like powering appliances and lights.

Conversion of a conventional clothes dryer

UC student Adam Saltzman, a graduate architecture student from Columbus, is creating a new kind of dryer closet that can serve as a stand alone and/or be connected - via an adapter - to a conventional dryer.

Two pipes carrying solar-heated water enter a heat exchanger at the bottom of the dryer closet. Hot air then rises in the closet to dry hanging clothes - which will then need little to no ironing.

Additionally, heat from this dryer closet can be passed - via an adapter - to a conventional dryer now in use throughout the world.

Thus, the conventional dryer now needs no conventional electric- or gas-powered heat source, only a minimal amount of grid-provided electricity to rotate wet apparel.

"Use of this adapter would represent a significant cost and energy savings annually and over the life of the dryer. One day, we'd love it if conventional dryers could be sold with our idea as a simple modification kit," said Anton Harfmann, a leader of the solar house project and associate dean of UC's top-ranked College of Design, Architecture, Art, and Planning.

A new "appliance" in the house

UC physics major Todd Kolloff of Northside is heading an experiment where hot and cold water work together to generate electricity for general use in the home.

His "appliance" is a small cistern filled with hot water. (In fact, the evacuated tubes found outside the UC solar house easily heat water to 180 to 195 degrees Fahrenheit.) Attached to this cistern are thermo-electric modules (palm-sized panels that conduct energy). In what is known as the Seebeck effect, heat passing through these devices creates electricity.

If these panels - heated on one side by the solar-heated hot water and cooled on the other by tap water - are found to work here, such panels could just as easily be placed on a much larger thermal-storage tank. Or in the chimney of the house to recapture heat and then convert it to electricity or even in the exhaust manifold of a car to create electricity for the vehicle's use.

Showing the savings

In the construction phase of UC's solar house, students and faculty applied alternative-energy uses for technology. However, precise determinations regarding cost savings - based on field experiments - have not yet been possible due to time constraints.

At the end of the summer, the current team working on these experiments hopes to gather data in regard to the capital equipment costs and operational-cost savings connected to these alternative-energy experiments and then compare these to conventional equipment and energy-generation costs.

The best education for the future

UC architecture student Adam Saltzman sees his involvement in ongoing solar experiments as the best preparation for his professional future. He explained, "Architects integrate technology into buildings and make that technology practicable. For instance, an architect can orient the house to receive solar energy."
Faculty and students involved in UC's ongoing solar house experiments

University of Cincinnati

Related Electricity Articles from Brightsurf:

Mirror-like photovoltaics get more electricity out of heat
New heat-harnessing 'solar' cells that reflect 99% of the energy they can't convert to electricity could help bring down the price of storing renewable energy as heat, as well as harvesting waste heat from exhaust pipes and chimneys.

Engineers use electricity to clean up toxic water
Powerful electrochemical process destroys water contaminants, such as pesticides. Wastewater is a significant environment issue.

Considering health when switching to cleaner electricity
Power plants that burn coal and other fossil fuels emit not only planet-warming carbon dioxide, but also pollutants linked to breathing problems and premature death.

Windows will soon generate electricity, following solar cell breakthrough
Semi-transparent solar cells that can be incorporated into window glass are a 'game-changer' that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.

Static electricity as strong as lightening can be saved in a battery
Prof. Dong Sung Kim and his joint research team presented a new technology that can increase the amount of power generated by a triboelectric nanogenerator.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.

Water + air + electricity = hydrogen peroxide
A reactor developed by Rice University engineers produces pure hydrogen peroxide solutions from water, air and energy.

Producing electricity at estuaries using light and osmosis
Researchers at EPFL are working on a technology to exploit osmotic energy -- a source of power that's naturally available at estuaries, where fresh water comes into contact with seawater.

Experimental device generates electricity from the coldness of the universe
A drawback of solar panels is that they require sunlight to generate electricity.

Read More: Electricity News and Electricity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.