Scientists link shifting Atlantic mackerel distribution to environmental factors, changing climate

August 12, 2011

NOAA scientists have found that environmental factors have changed the distribution patterns of Atlantic mackerel (Scomber scombrus), a marine species found in waters from Cape Hatteras to Newfoundland, shifting the stock northeastward and into shallower waters. Atlantic mackerel migrate great distances on a seasonal basis to feed and spawn, and are sensitive to changes in water temperature. These findings could have significant implications for U.S. commercial and recreational mackerel fisheries that mostly occur during late winter and early spring.

In a paper published online in the American Fisheries Society journal Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science, researchers from NOAA's Northeast Fisheries Science Center (NEFSC) reviewed annual changes in the winter and early-spring distribution of the Atlantic mackerel stock on the northeast U.S. continental shelf using spatial and standard statistical analyses of data collected on research trawl surveys.

"Our findings suggest that both the commercial and recreational Atlantic mackerel fisheries in the United States will probably be faced with more variable resource conditions in the future in terms of the winter distribution of the stock," said study co-author Jon Hare of the Northeast Fisheries Science Center (NEFSC)'s laboratory in Narragansett, R.I. "The continental shelf is warming, increasing the area over which the stock can be distributed, while at the same time the distribution of the stock is shifting northward."

Between 1968 and 2008, the overwintering distribution of the Northwest Atlantic stock has shifted about 250 kilometers (roughly 155 miles) to the north and about 50 kilometers (about 30 miles) to the east. The Atlantic mackerel population has also shifted from deeper off-shelf locations to shallower on-shelf areas where more area is now available within the mackerel's preferred temperature range. Atlantic mackerel prefer water above 5 degrees Celsius (41 degrees Fahrenheit).

The environmentally-driven shift in distribution patterns will probably make it more difficult to find and catch Atlantic mackerel in certain areas in the future. The authors note that the Canadian coastal commercial fishery has continued to thrive while the U.S. commercial mackerel fishery during the winter has declined in recent decades. The change in distribution pattern could also impact other species, since mackerel plays a central role in the food web of the ecosystem. Atlantic mackerel are prey for a wide variety of species; they eat mostly small crustaceans and plankton.

"Atlantic mackerel is one of many species shifting their distribution range as a result of changing oceanographic and environmental patterns," said Hare. "Those patterns include regional temperature changes from year to year and larger scale environmental forces or climate drivers such as the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO).

Recent studies have indicated a northward shift in distributions of a number of species in this region (Nye et al., 2009), and work by Hare and others in 2010 documents a shift in the distribution and increase in biomass of Atlantic croaker (Micropogonias undulatus) associated with warming. This latest study on Atlantic mackerel by Hare and NOAA Fisheries co-authors William Overholtz (now retired) and Charles Keith of the NEFSC's Woods Hole Laboratory in Massachusetts indicates that the changes in distribution are related to both interannual variability in temperature and a general warming trend on the Northeast Atlantic continental Shelf.

Despite the current high abundance of the stock, the changes could make it harder for U.S. commercial vessels to locate large schools of mackerel during the winter, when the majority of landings occur, because the fish are dispersed over a larger area within their preferred temperature range. The study also has implications for an early spring recreational Atlantic mackerel fishery in the mid-Atlantic region, which has declined steadily since the 1960s. The trends in recreational landings of Atlantic mackerel are unrelated to fishery regulations or management actions as there were no size limits, bag limits or constraining quotas in effect during this period.

"If the data from the late 1960s are indicative of the southernmost limit in the overwintering population of Atlantic mackerel, the change in the northern and eastern extent of the winter distribution of the stock is relatively large," Hare said. "Although there has been considerable interannual variability in the stock's distribution from the late 1960s through the first decade of the 21st century, the Atlantic mackerel stock has progressively moved from the offshore mid-Atlantic region to the southern New England shelf, and is now on the continental shelf more often in winter and much farther north and east of their previous winter positions, moving most recently onto Georges Bank."
-end-


NOAA Northeast Fisheries Science Center

Related Water Temperature Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Advancing high temperature electrolysis: Splitting water to store energy as hydrogen
Recently, researchers at Idaho National Laboratory developed a new electrode material for an electrochemical cell that can efficiently convert excess electricity and water into hydrogen.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Fossil foraminifer in marine sediment reveals sea surface water temperature 800,000 years ago
Japanese researchers found that the sea surface water temperature in the northwestern Pacific fluctuated drastically from approximately 800,000 to 750,000 years ago, based on oxygen isotope analyses for fossil foraminifers from an uplifted marine succession in the Chiba composite section on Honshu Island, Japan.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water Temperature News and Water Temperature Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.