Scientists highlight link between stress and appetite

August 12, 2011

Researchers in the Hotchkiss Brain Institute (HBI) at the University of Calgary's Faculty of Medicine have uncovered a mechanism by which stress increases food drive in rats. This new discovery, published online this week in the journal Neuron, could provide important insight into why stress is thought to be one of the underlying contributors to obesity.

Normally, the brain produces neurotransmitters (chemicals responsible for how cells communicate in the brain) called endocannabinoids that send signals to control appetite. In this study, the researchers found that when food is not present, a stress response occurs that temporarily causes a functional re-wiring in the brain. This re-wiring may impair the endocannabinoids' ability to regulate food intake and could contribute to enhanced food drive.

The researchers also discovered that when they blocked the effects of stress hormones in the brain, the absence of food caused no change in the neural circuitry.

Researchers Jaideep Bains, Ph.D. and Quentin Pittman, Ph.D., looked specifically at nerve cells (neurons) in the region of the brain called the hypothalamus. This structure is known to have an important role in the control of appetite and metabolism and has been identified as the primary region responsible for the brain's response to stress.

Bains explains, "These findings could help explain how the cellular communication in our brains may be overridden in the absence of food. Interestingly, these changes are driven not necessarily by the lack of nutrients, but rather by the stress induced by the lack of food."

If similar changes occur in the human brain, these findings might have several implications for human health.

"For example, if we elect to pass over a meal, the brain appears to simply increase the drive in pathways leading to increased appetite," explains Pittman. "Furthermore, the fact that the lack of food causes activation of the stress response might help explain the relationship between stress and obesity."

These results lay the foundation for future studies to investigate the use of therapies that affect these systems in order to manipulate food intake. They also open the door to studies looking at whether or not the stress brought about by lack of food affects other systems where endocannabinoids are known to play a role.

"One thing we can say for sure, is that this research highlights the importance of food availability to our nervous system. The absence of food clearly brings about dramatic changes in the way our neurons communicate with each other," says Pittman.
-end-
This work was conducted jointly in the labs of Bains and Pittman and the experiments were carried out by Karen Crosby and Wataru Inoue, Ph.D. The research is supported by operating grants from the Canadian Institutes of Health Research (CIHR) and Alberta Innovates- Health Solutions (AI-HS).

University of Calgary

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.