Infectious diseases and climate change intersect with no simple answers

August 12, 2013

Climate change is already affecting the spread of infectious diseases--and human health and biodiversity worldwide--according to disease ecologists reporting research results in this week's issue of the journal Science.

Modeling disease outcomes from host and parasite responses to climate variables, they say, could help public health officials and environmental managers address the challenges posed by the changing landscape of infectious disease.

"Earth's changing climate and the global spread of infectious diseases are threatening human health, agriculture and wildlife," said Sam Scheiner, National Science Foundation (NSF) program director for the joint NSF-National Institutes of Health Ecology and Evolution of Infectious Diseases Program, which funded the research.

"Solving these problems requires a comprehensive approach that unites scientists from biology, the geosciences and the social sciences."

According to lead author Sonia Altizer of the University of Georgia, the issue of climate change and disease has provoked intense debate over the last decade, particularly in the case of diseases that affect humans.

In the Science paper, Altizer and her colleagues--Richard Ostfeld of the Cary Institute of Ecosystem Studies; Pieter Johnson of the University of Colorado; Susan Kutz of the University of Calgary and Canadian Cooperative Wildlife Health Centre; and Drew Harvell of Cornell University--laid out an agenda for future research and action.

"For a lot of human diseases, responses to climate change depend on the wealth of nations, healthcare infrastructure, and the ability to take mitigating measures," Altizer said.

"The climate signal, in many cases, is hard to tease apart from other factors like vector control, and vaccine and drug availability."

In diseases affecting wildlife and agricultural ecosystems, however, findings show that climate warming is already causing changes.

"In many cases, we're seeing an increase in disease and parasitism," Altizer said. "But the effect of climate change on these disease relationships depends on the physiology of the organisms and on the structure of natural communities."

At the organism level, climate change can alter the physiology of parasites. Some of the clearest examples are found in the Arctic, where temperatures are rising rapidly. Parasites are developing faster as a result. A lungworm that affects muskoxen, for instance, may be transmitted over a longer period each summer, making it a more serious problem for the populations it infects.

Climate change is also affecting entire plant and animal communities.

Community-level responses to rising temperatures are evident in tropical marine environments such as the coral reef ecosystems of the Caribbean. Warmer water temperatures have directly stressed corals and facilitated infections by pathogenic fungi and bacteria. When corals succumb, other species that depend on them are affected.

The potential consequences of these changes are serious. The combination of warmer temperatures and altered disease patterns is placing growing numbers of species at risk of extinction, the scientists say.

In human health, there is a direct risk from pathogens like dengue, malaria and cholera. All are linked to warmer temperatures.

Indirect risks also exist in threats to agricultural systems and game species that are crucial for subsistence and cultural activities.

The scientists recommend building on and expanding data on the physiological responses of hosts and parasites to temperature change. Those mechanisms may offer clues to how a system will respond to climate warming.

"We'd like to be able to predict, for example, that if the climate warms by a certain amount, then in a particular host-parasite system we might see an increase from one to two disease transmission cycles each year," Altizer said.

"But we'd also like to try to tie these predictions to actions that might be taken."

Some of those actions might involve more monitoring and surveillance, adjusting the timing of vector control measures and adopting new management measures.

These could include, for instance, closing coral reefs to human activity if a disease outbreak is predicted, or changing the planting strategy for crops to compensate for unusually high risks of certain diseases.

The researchers also point out that certain local human communities, such as those of indigenous peoples in the Arctic, could be disproportionately affected by climate-disease interactions.

Predicting where these local-scale effects might be most intense would allow societies to take measures to address issues such as health and food security.

"Involving local communities in disease surveillance," said Altizer, "could become essential."
-end-
-NSF-

National Science Foundation

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.