Nav: Home

PPPL contract for long-pulse lithium research on EAST

August 12, 2016

The U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has been named principal investigator for a multi-institutional project to study plasma-materials interaction (PMI) on the Experimental Advanced Superconducting Tokamak (EAST) in China. The centerpiece of the PPPL role in this project is the optimization of lithium delivery systems. The tests will be designed to optimize the production of long-pulse plasmas that last from 30 seconds to more than one minute. This project is supported by Fusion Energy Sciences in the DOE Office of Science.

The three-year, approximately $2.1 million contract -- subject to annual budget availability -- is synergistic with other PPPL collaborations funded by DOE to investigate long-duration plasma confinement. These collaborations involve EAST, the Korean Superconducting Advanced Research (KSTAR) tokamak, and the Wendelstein-7X (W-7X) stellarator in Germany.

For the PMI project, PPPL will use devices called flowing liquid lithium limiters and granule injectors, as well as optimization of coating techniques, to protect the plasma-facing components inside the EAST facility. PPPL has applied lithium to its National Spherical Torus Experiment (NSTX), which has recently been upgraded, and will continue to use lithium. Also housed at PPPL is the Lithium Tokamak Experiment (LTX), a small, short-pulse complementary experiment that explores the effect of a liquid-lithium boundary on the plasma.

The new experiments will test the ability of lithium to protect the EAST walls and prevent impurities from bouncing back into the core of the plasma and halting fusion reactions. Success of such efforts could point to a method for optimizing long-running plasmas. "We're trying to make a cohesive program so the things that we've learned in this country can be tried over there," said physicist Rajesh Maingi, who will lead the PPPL effort. "Then we can bring back what we learn there to help us here."

Collaborating with PPPL on the PMI project are the Los Alamos and Oak Ridge national laboratories, together with Johns Hopkins University, the Massachusetts Institute of Technology, the University of Illinois and the University of Tennessee.
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.
Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.
How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.
A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.
Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.
Chemotherapeutic drugs and plasma proteins: Exploring new dimensions
This review provides a bird's eye view of interaction of a number of clinically important drugs currently in use that show covalent or non-covalent interaction with serum proteins.
More Plasma News and Plasma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.