Researchers at NIH have developed simple, sensitive, and cost-effective assays for analyzing Fragile X-related disorders

August 12, 2016

Philadelphia, PA, August 12, 2016 - Fragile X syndrome, the most common heritable cause of intellectual disability and a frequent cause of autism, is characterized by abnormalities of the FMR1 gene that are difficult to analyze. Preclinical studies of Fragile X and the Fragile X-related disorders are hampered by the lack of low-cost and sensitive yet simple methods. National Institutes of Health (NIH) researchers have now developed a set of assays that are robust, cheap enough for routine research use, and may be suitable for initial patient screening, according to a new report in The Journal of Molecular Diagnostics.

Fragile X-related disorders result from expansion of a hyper-variable and methylation-prone trinucleotide-repeat tract in the FMR1 gene. Patients with Fragile X syndrome typically have more than 200 repeats whereas individuals with 55 to 200 repeats are at risk for Fragile X-associated primary ovarian insufficiency and Fragile X-associated tremor/ataxia syndrome.

"Careful analysis of the total number of repeats, the number of interruptions in the repeat tract, and the methylation status of the FMR1 gene is important for a proper understanding of an individual's risk of transmission of larger alleles to their offspring and to their personal risk of disease pathology. It is also critical for addressing a number of important research questions," explained Karen Usdin, PhD, Senior Investigator and Chief of the Gene Structure and Disease Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH (Bethesda, MD).

The new assays have the ability to amplify alleles with up to approximately 1,000 repeats, even in samples from patients who are mosaic, ie, who have a mixture of cells with different repeat numbers. The assays are sensitive enough to analyze saliva samples with minimal purification. Testing can be completed within a timeframe similar to that of recent commercial diagnostic assays (less than 24 hours to determine repeat size and/or methylation status, less than 24 hours to determine the interruption status and percent methylation) and are comparable in terms of hands-on time required. These assays make it possible to detect even small changes in DNA methylation, making them useful in the hunt for new drugs to reverse the effects of repeat expansion.

"The basic assays for repeat number, methylation status, and the number of uninterrupted repeats cost less than $5, the mark typically considered the threshold for population-based screening," said Bruce Hayward, PhD, a Senior Research Fellow in the Laboratory of Cell and Molecular Biology and the report's first author.

To develop these assays, the researchers modified an established PCR assay that was capable of sizing only small alleles to enable it to size larger alleles. "Realizing the potential broader utility of the sizing assay, we then expanded its abilities to include both methylation and interruption status. We showed that these assays perform robustly even in the most challenging of situations," said Dr. Hayward.

The researchers hope that these assays will be used by many laboratories that are studying the events associated with early embryonic development and the effect of repeat length and methylation status on gene expression and differentiation. "Without the ability to verify CGG-repeat number and methylation status, it is impossible to distinguish between bona fide developmentally-regulated changes and artifacts arising from the instability in repeat number and methylation commonly associated with these cells," said Dr. Usdin.

Elsevier Health Sciences

Related Methylation Articles from Brightsurf:

Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development
A research team working at The University of Tokyo and Kyoto University in Japan has announced that they have successfully identified specific target sites for the DNA methylases DNMT3A and DNMT3B .

New insights into epigenetic modifications
Scientists at the European Molecular Biology Laboratory in Rome, in collaboration with Tim Bestor at Columbia University in New York and John Edwards at Washington University in St.

From bacteria to you: The biological reactions that sustain our rhythms
Methylation and the circadian clock are both conserved mechanisms found in all organisms.

Large-scale analysis of protein arginine methylation by mass spectrometry
In this research, the researchers offer an overview on state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods.

Oncotarget: DNA methylation of MMPs and TIMPs in atherothrombosis process in carotid plaques
Oncotarget Volume 11, Issue 10 reported that the statistically associated Cp G sites were analyzed in blood samples from two separate atherothrombotic stroke cohorts, ischemic stroke-cohort 1: 37 atherothrombotic patients and 6 controls, ischemic stroke-cohort 2: 80 atherothrombotic patients and 184 controls.

Stressed corals set up progeny for a better life
First evidence that animal DNA methylation patterns can be passed to the next generation.

RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.

Structural and biochemical studies clarify the methylation mechanism of anticodon in tRNA
Groups in Ehime University, Japan and the High Energy Accelerator Research Organization (KEK), Japan have solved the crystal structure of the eukaryotic Trm7-TRm734 complex, which methylates the ribose at the first position of anticodon in tRNA.

First glimpse at what ancient Denisovans may have looked like, using DNA methylation data
Exactly what our ancient Denisovan relatives might have looked like had been anyone's guess for a simple reason: the entire collection of Denisovan remains includes a pinky bone, three teeth, and a lower jaw.

Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.

Read More: Methylation News and Methylation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to