Global crosstalk limits gene regulation

August 12, 2016

Molecular recognition is fundamental to transcriptional regulation, the primary mechanism by which cells control gene expression. The specificity of this regulation originates in the binding interactions between special regulatory proteins, called transcription factors (TFs), and short regulatory sequences on the DNA, called binding sites. Although each type of TF preferentially binds certain regulatory DNA sequences, evidence shows that this binding specificity is limited, and that TFs bind other noncognate targets, too. If these sites happen to be regulatory elements of other genes, noncognate binding not only depletes TF molecules, but could also actively interfere with gene regulation. This suggests that the crosstalk problem is global.

In "Intrinsic limits to gene regulation by global crosstalk", a research paper published on August 4 in Nature Communications, ISTFellow Tamar Friedlander, PhD student Roshan Prizak, and Professors Calin Guet, Nick Barton and Gasper Tkacik construct a biophysical model for crosstalk in transcriptional regulation that accounts for all cross-interactions between regulators and their binding sites. They identify the parameters that have a major influence on crosstalk severity. While some of these parameters are difficult to estimate, they show that there exists a lower bound to crosstalk with respect to these parameters. This implies the existence of a "crosstalk floor," which cannot be overcome even if TF concentrations were optimally adjusted by the cell and compensated for sequestration at noncognate sites.

Although most of the biophysical constraints have been understood at the level of individual genetic regulatory elements, the researchers find that crosstalk is special: while it originates locally due to biophysical limits to molecular recognition, its cumulative effect only emerges globally. At the level of a single genetic regulatory element, crosstalk can always be avoided by increasing the concentration of cognate TFs or introducing multiple binding sites in the promoter. It is only when these same cognate TFs act as noncognate TFs for other genes, or that new binding sites in the promoter drastically increase the number of noncognate binding configurations, that crosstalk constraints become clear.
-end-


Institute of Science and Technology Austria

Related Gene Regulation Articles from Brightsurf:

Neuron-based gene expression study reveals insights on fear and its regulation
The expression of a gene called CREB in certain neurons may function as a switch to regulate feelings of fear and its extinction.

Scientists discover new concept of bacterial gene regulation
Microbiologist Prof. Kai Papenfort and his team at Friedrich Schiller University Jena (Germany) discovered a new mechanism of autoregulation during gene expression that relies on small regulatory ribonucleic acids (sRNAs) and the major endoribonuclease RNase E.

Toward principles of gene regulation in multicellular systems?
Quantitative biologists from Northwestern combine precision measurements and mathematical models to uncover a common mechanism regulating gene expression during development.

Adolescents from disadvantaged neighborhoods show gene regulation differences
An 18-year study of 2,000 children born in England and Wales found that young adults raised in communities marked by more economic deprivation, physical dilapidation, social disconnection, and danger display differences in the epigenome -- the proteins and chemical compounds that regulate the activity of their genes.

Unpacking the two layers of bacterial gene regulation during plant infection
A new study has revealed new insights into how pathogenic bacteria regulate gene expression during plant infection as well as the strategies employed by plants to protect themselves from bacterial invaders.

New image of a cancer-related enzyme in action helps explain gene regulation
New images of an enzyme in action as it interacts with the chromosome could provide important insight into how cells--including cancer cells -- regulate their gene

Copy/paste and delete -- or how to thrive without gene regulation
Turning genes on and off as needed allows an organism to adapt to changes in the environment -- provided the organism has a specific regulatory design in place.

Finally, machine learning interprets gene regulation clearly
A new brand of artificial neural network has solved an interpretability problem that has frustrated biologists.

Gene expression regulation in Chinese cabbage illuminated
The important role played by the histone modification H3K27me3 in regulating gene expression in Chinese cabbage has been revealed.

Gene regulation behind the choice of the correct receptor for olfaction
Scientists at Tokyo Institute of Technology (Tokyo Tech) have uncovered the genetics behind two distinct types of olfactory sensory neurons; the so called 'class I olfactory neurons' that has persisted from aquatic to terrestrial animals and the 'class II olfactory neurons' that only terrestrial animals possess.

Read More: Gene Regulation News and Gene Regulation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.