Nav: Home

TPU physicists to provide accuracy of the world's most powerful synchrotron

August 12, 2016

Tomsk Polytechnic University has signed an agreement on scientific cooperation with the Deutsches Elecktronen Synchotron (DESY), Germany - one of Europe's largest accelerator centers. Among the most important projects of DESY is the creation of the European X-ray Free Laser (European XFEL). The development will expand the capabilities of modern medical diagnostics - with its help you can investigate the slightest changes in body at the molecular level. The task of polytechnicers in the joint project will be to develop equipment for the continuous monitoring the diagnostic station parameters of European XFEL amplified beam, that will make the operation of the X-ray free laser as accurate as possible.

Scientists from Tomsk Polytechnic University and DESY have signed a Memorandum of Understanding, which will expand the already existing collaboration between TPU physicists and one of the leading German accelerator center.

One of the major projects currently being implemented by DESY physicists is the creation of European XFEL.

According to the head of the TPU scientific group participating in the project, a leading researcher at the Department of Applied Physics Alexander Potylitsyn, X-ray and laser radiation is now used in modern medicine, but separately from each other. X-rays allow you to scan the patient's body, however superficially. It is impossible to see inside a biological object, for example, blood vessels near the heart. The problem of medical x-ray sources is related to their scattering processes in the objects, therefore, only a small part of energy reaches the targeted area of the body, significantly reducing diagnostic capabilities. In turn, laser is a focused energy flow, which is not dissipated. However, lasers can't penetrate the object thickness more than 30 cm, this radiation is of high temperature, there is a danger during its using to damage objects such as human body tissues.

"The idea of the European X-ray Free Laser is to combine the advantages of X-ray and laser radiation. The intensity and direction of X-rays will be focused, like laser. Thus, the flow will not be scattered, and X-ray diagnostic capabilities will increase by several times, - the scientist explains. - With the help of the X-ray free laser it can be conducted, for example, scanning on the molecular level and learnt how drugs affect cells in our bodies - which their components have a useful, and which, on the contrary, harmful effect".

This technology will be useful in materials science as well. For example, in studying properties of nanomaterials.

It is assumed that the European X-ray Free Laser will be the most powerful of the existing facilities of synchrotron radiation.

With it, you can get a X-ray monochromatic beam with energy up to 25 keV and an intensity greater than 10 orders of the intensity of synchrotron radiation on the most powerful source of such radiation - SPring-8 Storage Ring (Japan) to date.

"To get a powerful X-ray source, it is necessary to accelerate electrons to energy of 17.5 GeV in superconducting accelerator and run them through a special magnetic system - an undulator. The length of these superconducting accelerator modules is 3.4 km. They are now housed in a specially designed tunnel, their setting is run,"- says Alexander Potylitsyn.

In order to provide X-ray beam with required parameters, you need to control the characteristics of the accelerated electron beam with high accuracy.

For this purpose, physicists from Tomsk Polytechnic University proposed a new method for the diagnosis of such beams, and the leadership of a DESY's instrumental department adopted this proposal for an experimental verification. During joint experiments in 2011-2015 it was shown that the proposed method can be used to diagnose XFEL beams.

In 2017, with the participation of the polytechnicers it is scheduled to create a diagnostic station for continuous monitoring the parameters of accelerated electron beams.

In the memorandum the parties agreed on a joint research programme in 2016-2018.

The European XFEL project cost exceeds 1 billion euro and is funded by a consortium of a number of countries including Russia. The Russian contribution to the European XFEL is 250 mln. euro, the second after Germany.
-end-


Tomsk Polytechnic University

Related Radiation Articles:

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.
First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.
New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.
A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.
Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.
Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.
'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.
Radiation contamination at a crematorium
Radioactive compounds known as radiopharmaceuticals are used in nuclear medicine procedures to diagnose and treat disease.
More Radiation News and Radiation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.