Nav: Home

Study establishes the first public collection of bacteria from the intestine of mice

August 12, 2016

Mouse models are extensively used in pharmaceutical and medical research, and it is known that the communities of microbes in their intestine can have a significant impact on the research output. However, there is still insufficient information available about many bacteria inhabiting the intestine of mice. For the first time, a collection of cultured bacterial strains provides comprehensive information on the mouse gut microbiota: Scientists at the Technical University of Munich were able to isolate, characterize, and archive a hundred strains, including 15 hitherto unknown taxa.

They are microscopically small and live both on humans and animals. They can help with recovery from an illness or literally make you sick: Billions of micro-organisms, most of which are found in the intestines, as well as on the skin and other regions of the body, living in symbiosis with the host. These tiny beings are of central importance, and experts refer to them as intestinal microbiota or the microbiome. Decoding its characteristics and obtaining a better understanding of it is what scientists at the Central Institute for Nutrition and Food Research (ZIEL) at the Technical University of Munich (TUM) are working on.

76 cultured bacterial species from the mouse microbiome identified and archived

One key to obtaining information about the interactions between gut bacteria and their host are mouse models. However only a handful of mouse intestinal bacteria have been made publicly available and fully characterized so far. This is a highly limiting factor for research, because it complicates the annotation of data obtained by molecular techniques, and because it has been shown that gut microbiomes are to some extent specific to their host, and researchers have been using strains of other origin in mouse models. Dr. habil. Thomas Clavel from ZIEL and colleagues describe a new resource in "Nature Microbiology" which, for the first time, contains a hundred cultured bacterial strains from the mouse gut microbiome. For this study, 1500 cultures were examined, and 76 different species were identified and archived.

"The goal of our work was to take a big initial step towards decoding the cultured fraction of gut bacterial communities in mice. There is still a lot left to do. We will be making our work available to scientists around the world and hope that others will also help to find the pieces to complete the puzzle", said Clavel, who has been researching various bacteria in gut microbiomes at the TU Munich for ten years. Although the mouse gut microbiome presents a number of similarities with the human microbiome, the work showed that around 20 percent of the strains in the collection prefer colonizing the intestines of mice.

In order to better understand colonization processes in the intestine, bacteria first need to be identified and characterized in detail. "Because mouse models are indispensable for preclinical studies, the resource now made available shall contribute to a better understanding of microbe-host interactions and to a higher degree of standardization", said Clavel.

New bacteria with specific functions

For the first time, the researchers were able to characterize new bacteria with important functional properties: For example Flintibacter butyricum produces the short-chain fatty acid butyrate from both sugars and proteins--a rare property in the realm of intestinal bacteria. Butyrate is a main product of fermentation in the intestine, and has been shown to have anti-inflammatory and positive effects against metabolic diseases in numerous studies.

"We still have a lot of gaps in our knowledge about gut microbiomes, but with the publicly available database of cultured mouse gut bacteria and their genetic material, we are now a little closer to our goal", Thomas Clavel from the TUM stated enthusiastically.
-end-
Publication:

Ilias Lagkouvardos, Rüdiger Pukall, Birte Abt, Bärbel U. Foesel, Jan P. Meier-Kolthoff, Neeraj Kumar, Anne Bresciani, Inés Martínez, Sarah Just, Caroline Ziegler, Sandrine Brugiroux, Debora Garzetti, Mareike Wenning, Thi P. N. Bui, JunWang, Floor Hugenholtz, Caroline M. Plugge, Daniel A. Peterson, MathiasW. Hornef, John F. Baines, Hauke Smidt, Jens Walter, Karsten Kristiansen, Henrik B. Nielsen, Dirk Haller, Jörg Overmann, Bärbel Stecher und Thomas Clavel: A Mouse Intestinal Bacterial Collection (miBC) provides Host-Specific Insight into Cultured Diversity and Functional Potential of the Gut Microbiota, Nature Microbiology 08/2016. DOI 10.1038/nmicrobiol.2016.131 http://www.nature.com/articles/nmicrobiol2016131

Technical University of Munich (TUM)

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.