Tibetan Plateau gets wetter and greener in early summer in recent decades

August 12, 2017

Known as the "water tower of Asia", the Tibetan Plateau (TP) is the source of the ten largest rivers in Asia, supporting more than 1.4 billion people and exerting a substantial influence on the water resources, agriculture, and ecosystems of the downstream countries. The change of water supplies over the TP has long been a "hotspot" of climate change research. Recently, a new study conducted by Dr. ZHANG Wenxia, Prof. ZHOU Tianjun and Dr. ZHANG Lixia from Institute of Atmospheric Physics, Chinese Academy of Sciences shows that the TP has been getting significantly wetter in May since 1979.

According to their study, both increased precipitation frequency and intensity have contributions to a wetter climate over TP. "Our further analyses show that the phase transition of Interdecadal Pacific Oscillation around the late 1990s has promoted an earlier onset of the South Asian summer monsoon since 1979. " says the first author Dr. ZHANG, " It happens via increasing meridional thermal contrast between the Indian Ocean and the Asian landmass in the pre-monsoon season." The earlier onset of the South Asian summer monsoon is then favorable for increased southwesterly water vapor transport and hence a wetting TP in May.

"The wetting TP has significant consequences in that it has influenced the regional hydrological cycle and ecosystem," says Prof. ZHOU Tianjun. The coherent increases in the soil moisture content and vegetation activities confirm the precipitation trend, indicating a wetting and greening TP in the early summer in recent decades. "This is especially beneficial for agriculture during the vegetation growing season. The increased rainfall also indicates richer water release from the TP to downstream areas, suggesting enhanced water availability in Asia."

This work is recently published in Journal of Geophysical Research: Atmospheres and highlighted by AGUniverse.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Tibetan Plateau Articles from Brightsurf:

Convection-permitting modelling improves simulated precipitation over the Tibetan Plateau
A China-UK research team explains the possible reasons for excessive precipitation over the TP in the mesoscale convection-parameterized models.

Denisovan DNA found in sediments of Baishiya Karst Cave on Tibetan Plateau
A joint research team from China, Germany and Australia has now reported their findings of Denisovan DNA from sediments of the Baishiya Karst Cave (BKC) on the Tibetan Plateau where the Xiahe mandible was found.

Fossil trees on Peru's Central Andean Plateau tell a tale of dramatic environmental change
The anatomy of plant fossils including an enormous tree that grew 10 million years ago in the now arid, high-elevation Central Andean Plateau calls current paleoclimate models into question, suggesting that the area was more humid than models predict.

First in situ radiation measurements 21 km up into the air over Tibetan Plateau
In situ vertical radiation measurements from the surface up to the upper troposphere and lower stratosphere (UTLS), about 10~22 km in altitude, are rare over the TP or even over a large territory of China.

The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.

Geologists shed light on the tibetan plateau origin puzzle: an open-and-shut perspective
Earth's geographical surfaces have been formed over millions of years.

The Kerguelen oceanic plateau sheds light on the formation of continents
How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory (CNRS/Université Toulouse III-Paul Sabatier/IRD/CNES).

Tibetan antelope thrive at high altitudes using a juvenile form of blood oxygen transport
Adult Tibetan antelope have overcome oxygen deprivation on the high-altitude Tibetan Plateau through an unusual adaptation in which they permanently express a form of hemoglobin (the iron-containing oxygen transport protein in red blood cells) that other members of the cattle family only express as juveniles or when under extreme oxygen deprivation.

Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau
A study about grazing exclusion using fences on the Tibetan Plateau by a team of researchers from China, Australia and Japan recently published in Science Bulletin, and commented in the Editors' choice column of Science.

Why the 'uplift of the Tibetan plateau' is a myth
Spicer and colleagues combine stable isotope and fossil paleoaltimetry to chart the growth of Tibet, the Himalaya and the Hengduan mountains through time and show the plateau is young, less that 15 million years old, and evolved not just by the collision of India with Eurasia but through multiple earlier mountain-building events and the infilling of deep ancient lowlands hosting subtropical monsoon-adapted biotas.

Read More: Tibetan Plateau News and Tibetan Plateau Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.