A quick, cost-effective method to track the spread of COVID-19

August 12, 2020

A group of researchers have demonstrated that, from seven methods commonly used to test for viruses in untreated wastewater, an adsorption-extraction technique can most efficiently detect SARS-CoV-2. This gives us another tool to detect the presence and spread of the COVID-19 pandemic.

Tracking the spread of the COVID-19 pandemic is currently conducted by testing nasal swabs or saliva samples. Tools and techniques to track the spread of the pandemic by other means would be very beneficial; wastewater monitoring is a method that would allow us to monitor the spread of the pandemic at a much larger scale. This is not a new technique, and has been used for detecting non-enveloped viruses, but a conventional method for enveloped viruses such as SARS-CoV-2 had not been developed.

In the current work, co-authored by Assistant Professor Masaaki Kitajima from the Water Quality Control Engineering Laboratory at Hokkaido University, scientists report a fast, economical method to concentrate coronavirus in untreated wastewater. Murine hepatitis virus (MHV), a type of enveloped virus, is closely related to SARS-CoV-2 but does not affect humans, and is thus safe to use for testing the feasibility of the method. The study was published in Science of the Total Environment.

The scientists obtained MHV from mice feces and introduced it into samples of untreated wastewater collected from Brisbane, Australia. They attempted to recover and concentrate the MHV from these samples by seven different methods which are commonly used to test for non-enveloped viruses. The amount of recovered MHV was determined by a method called reverse transcription-quantitative PCR, where the RNA of the virus extracted, converted to DNA, the DNA is repeatedly duplicated, and the increase in amount of DNA is measured throughout the process.

The recovery was highest in the method that involved treating the sample with magnesium chloride and then filtering out the virus on a negatively-charged membrane; the second highest recovery was by a similar method without magnesium chloride. The advantages of these methods include an initial processing time of under 1 hour and the need only for cheap, widely available equipment and reagents. There are also drawbacks, such as the clogging of the filters that may increase processing time. However, to date, the need for reverse transcription-qPCR for the detection of the virus is unavoidable.

The next step would be to test this method in samples collected from areas where the pandemic is prevalent. There are two objectives: one is to show that the technique can be used for SARS-CoV-2, and the other is to show that the test can be used on samples from outside the lab.

"I hope this research contributes to the establishment of a standard protocol for the detection of SARS-CoV-2 in wastewater," says Assistant Professor Kitajima, "and this, in turn, accelerates investigations to enhance our understanding of COVID-19 epidemiology through wastewater surveillance." He is currently involved in a number of studies related to applying wastewater-based epidemiology to tracking the spread of the COVID-19 pandemic, and has collaborated with a number of scientists and research groups across the world in this endeavor.
-end-


Hokkaido University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.