Researchers unlock secrets of the past with new international carbon dating standard

August 12, 2020

Radiocarbon dating is set to become more accurate than ever after an international team of scientists improved the technique for assessing the age of historical objects.

The team of researchers at the Universities of Sheffield, Belfast, Bristol, Glasgow, Oxford, St Andrews and Historic England, plus international colleagues, used measurements from almost 15,000 samples from objects dating back as far as 60,000 years ago, as part of a seven-year project.

They used the measurements to create new international radiocarbon calibration (IntCal) curves, which are fundamental across the scientific spectrum for accurately dating artefacts and making predictions about the future. Radiocarbon dating is vital to fields such as archaeology and geoscience to date everything from the oldest modern human bones to historic climate patterns.

Archaeologists can use that knowledge to restore historic monuments or study the demise of the Neanderthals, while geoscientists on the Intergovernmental Panel on Climate Change (IPCC), rely upon the curves to find out about what the climate was like in the past to better understand and prepare for future changes.

Professor Paula Reimer, from Queen's University Belfast and head of the IntCal project, said: "Radiocarbon dating has revolutionised the field of archaeology and environmental science. As we improve the calibration curve, we learn more about our history. The IntCal calibration curves are key to helping answer big questions about the environment and our place within it."

The team of researchers have developed three curves dependent upon where the object to be dated is found. The new curves, to be published in Radiocarbon, are IntCal20 for the Northern Hemisphere, SHCal20 for the Southern Hemisphere, and Marine20 for the world's oceans.

Dr Tim Heaton, from the University of Sheffield and lead author on the Marine20 curve, said: "This is a very exciting time to be working in radiocarbon. Developments in the field have made it possible to truly advance our understanding. I look forward to seeing what new insights into our past these recalculated radiocarbon timescales provide."

The previous radiocarbon calibration curves developed over the past 50 years, were heavily reliant upon measurements taken from chunks of wood covering 10 to 20 years big enough to be tested for radiocarbon.

Advances in radiocarbon testing mean the updated curves instead use tiny samples, such as tree-rings covering just single years, that provide previously impossible precision and detail in the new calibration curves. Additionally, improvements in understanding of the carbon cycle have meant the curves have now been extended all the way to the limit of the radiocarbon technique 55,000 years ago.

Radiocarbon dating is the most frequently used approach for dating the last 55,000 years and underpins archaeological and environmental science. It was first developed in 1949. It depends upon two isotopes of carbon called stable 12C and radioactive 14C.

While a plant or animal is alive it takes in new carbon, so has the same ratio of these isotopes as the atmosphere at the time. But once an organism dies it stops taking in new carbon, the stable 12C remains but the 14C decays at a known rate. By measuring the ratio of 14C to 12C left in an object the date of its death can be estimated.

If the level of atmospheric 14C were constant, this would be easy. However, it has fluctuated significantly throughout history. In order to date organisms precisely scientists need a reliable historical record of its variation to accurately transform 14C measurements into calendar ages. The new IntCal curves provide this link.

The curves are created based on collecting a huge number of archives which store past radiocarbon but can also be dated using another method. Such archives include tree-rings from up to 14,000 years ago, stalagmites found in caves, corals from the sea and cores drilled from lake and ocean sediments. In total, the new curves were based upon almost 15,000 measurements of radiocarbon taken from objects as old as 60,000 years.

Alex Bayliss, Head of Scientific Dating at Historic England, said: "Accurate and high-precision radiocarbon dating underpins the public's enjoyment of the historic environment and enables better preservation and protection.

"The new curves have internationally important implications for archaeological methodology, and for practices in conservation and understanding of wooden built heritage."

Darrell Kaufman of the IPCC said: "The IntCal series of curves are critical for providing a perspective on past climate which is essential for our understanding of the climate system, and a baseline for modelling future changes."
-end-
For further information please contact: Emma Griffiths, Media and PR Assistant, University of Sheffield, 0114 222 1034, e.l.griffiths@sheffield.ac.uk

Notes to editors

The University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities.

A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

University of Sheffield

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.