Selective conversion of reactive lithium compounds made possible

August 12, 2020

Researchers at Ruhr-Universität Bochum have developed a new catalyst that can catalyse reactions to produce pharmaceuticals or chemicals used in agriculture. It creates carbon-carbon bonds between what are known as organolithium compounds without creating any unwanted by-products. The team led by Professor Viktoria Däschlein-Gessner, Inorganic Chemistry II Research Group, describes the results in the journal Angewandte Chemie, published online on 29 July 2020.

Indispensable for many applications

Organolithium compounds are reagents with a lithium-carbon bond, which are among the most reactive compounds in synthetic chemistry. "Due to their special properties, they are indispensable in many applications, even on an industrial scale," says Viktoria Däschlein-Gessner, member of the Cluster of Excellence Ruhr Explores Solvation, Resolv for short. "However, high reactivity often also leads to unwanted side reactions. As a result, organolithium compounds have so far only been considered to a limited extent, or even not at all, for some applications."

The research group led by Viktoria Däschlein-Gessner was able to overcome such limitations with the help of a highly efficient catalyst. The new phosphine-palladium catalyst selectively couples two carbon atoms - both with different organolithium compounds and many so-called aryl halides. The decisive factor was that it is sufficiently active, even at room temperature.

Market launch planned

No additional additives are needed for the new synthesis process and it can be used widely. This means that intermediate steps during synthesis can be avoided, thus producing less metal salt waste. The catalyst guarantees a high degree of selectivity, even if product quantities of several grams are produced. To allow for use on an industrial scale, the next step must be to test it at even larger volumes.

In cooperation with industry, the researchers in Bochum intend to launch the developed catalysts on the market soon. "Their particular activity is not only advantageous in the described reactions, but also offers improvements for numerous other transformations in almost all areas of fine chemical synthesis," says Däschlein-Gessner. In addition to the production of pharmaceuticals and chemicals for agriculture, these include fragrances and materials for organic light-emitting diodes.
-end-


Ruhr-University Bochum

Related Pharmaceuticals Articles from Brightsurf:

A plot twist in pharmaceuticals: Single nanoparticles could pave the way for medicines on demand
For the first time, a single, twisted nanoparticle has been accurately measured and characterised in a lab, taking scientists one vital step closer to a time when medicines will be produced and blended on a microscopic scale.

New pharmaceuticals: public research combines efficiency with contained costs
Is the basic research that goes into the development of new drugs more efficiently conducted by public-sector scientists, pharmaceutical firms, or independent private laboratories?

New STM technique points way to new and purer pharmaceuticals
A research project led by chemists at the University of Warwick first used ultrahigh resolution scanning tunnelling microscopy to see the exact location of atoms and bonds within a molecule, and then employed these incredibly precise images to determine the interactions that bond molecules to one another.

Study describes cocktail of pharmaceuticals in waters in Bangladesh
An analysis revealed that water samples held a cocktail of pharmaceuticals and other compounds, including antibiotics, antifungals, anticonvulsants, anesthetics, antihypertensive drugs, pesticides, flame retardants and more.

Treating wastewater with ozone could convert pharmaceuticals into toxic compounds
With water scarcity intensifying, wastewater treatment and reuse are gaining popularity.

Study calls for improved sanitation and the environmental management of pharmaceuticals
Failure to ensure the environmental sustainability of growing patient access to medicines in developing economies could increase the risk of adverse environmental impacts, according to new research led by the University of Plymouth.

Chemicals for pharmaceuticals could be made cheaper and greener by new catalysts
High value chemicals used to make pharmaceuticals could be made much cheaper and quicker thanks to a series of new catalysts made by scientists at the University of Warwick in collaboration with GoldenKeys High-Tech Co., Ltd. in China.

Soaking up pharmaceuticals and personal care products from water
Medications excreted in the urine or dumped into the toilet can end up in the water supply, just like lotions or cosmetics that wash off the body and go down the sink or shower drain.

New study finds river wildlife contain cocaine, pharmaceuticals and pesticides
For the first time, researchers at King's College London, in collaboration with the University of Suffolk, have found a diverse array of chemicals, including illicit drugs and pesticides in UK river wildlife.

Metal-free catalyst to convert aldehyde into ketone, a basic structure of pharmaceuticals
We succeeded in synthesizing a ketone, a basic structure of many pharmaceuticals, from an aldehyde and a carboxylic acid using N-heterocyclic carbene catalyst under mild conditions.

Read More: Pharmaceuticals News and Pharmaceuticals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.