Group produces materials via self-organization in chemical systems

August 12, 2020

Entirely novel materials and known materials alike can be produced by means of self-organization in chemical systems. Applications range from sensors and batteries to fuel cells, among other technological possibilities. Achieving a deeper understanding and control of the processes involved is the goal of the Campinas Electrochemistry Group (CampEG), affiliated with the University of Campinas’s Institute of Chemistry (IQ-UNICAMP) in the state of São Paulo, Brazil, and led by Raphael Nagao.

Some results of the research were published in a recent article in The Journal of Physical Chemistry (JPC). A review of the group’s work as a whole is featured on the cover of ChemElectroChem.

FAPESP supports the group via several grants, especially a Young Investigator Grant to Nagao for the project Design and control of self-organized electrochemical patterns.

“In a reactor with electrodes, the electrochemical process in itself creates self-organizing nanometric or micrometric metal structures. The material grows because of oscillations in the electric potential,” Nagao told Agência FAPESP. “Energy conversion is one possible application of the resulting product – for example, as a catalyst of carbon dioxide (CO2) conversion into ethylene (C2H4), which is a more significant molecule in terms of its potential applications.”

A copper solution was used in the experiment reported in the JPC article. “The electrochemical process produced a deposition on the electrode, detected by means of the variation in potential,” Nagao said. “Using two organic ligands to prevent precipitation of the copper, we were able to control two parameters: the electric oscillation amplitude, which can be correlated with the chemical composition of the resulting material, and the oscillation period, which correlates with the thickness of the layer. Advance knowledge of the structure of the ligands therefore enables growth of the deposit to be controlled.”

Nagao added that the group now wants to achieve a detailed understanding of how these processes work from a basic science standpoint. Potential technological applications will be the next step. “Self-organization in chemical systems can be used as a sophisticated molecular construction mechanism. Exploration of catalytic advantages in terms of the selectivity and efficiency of these materials holds considerable promise going forward,” he said.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.