Nav: Home

Coffee stains inspire optimal printing technique for electronics

August 12, 2020

Have you ever spilled your coffee on your desk? You may then have observed one of the most puzzling phenomena of fluid mechanics - the coffee ring effect. This effect has hindered the industrial deployment of functional inks with graphene, 2D materials, and nanoparticles because it makes printed electronic devices behave irregularly.

Now, after studying this process for years, a team of researchers have created a new family of inks that overcomes this problem, enabling the fabrication of new electronics such as sensors, light detectors, batteries and solar cells.

Coffee rings form because the liquid evaporates quicker at the edges, causing an accumulation of solid particles that results in the characteristic dark ring. Inks behave like coffee - particles in the ink accumulate around the edges creating irregular shapes and uneven surfaces, especially when printing on hard surfaces like silicon wafers or plastics.

Researchers, led by Tawfique Hasan from the Cambridge Graphene Centre of the University of Cambridge, with Colin Bain from the Department of Chemistry of Durham University, and Meng Zhang from School of Electronic and Information Engineering of Beihang University, studied the physics of ink droplets combining particle tracking in high-speed micro-photography, fluid mechanics, and different combinations of solvents.

Their solution: alcohol, specifically a mixture of isopropyl alcohol and 2-butanol. Using these, ink particles tend to distribute evenly across the droplet, generating shapes with uniform thickness and properties. Their results are reported in the journal Science Advances.

"The natural form of ink droplets is spherical - however, because of their composition, our ink droplets adopt pancake shapes," said Hasan.

While drying, the new ink droplets deform smoothly across the surface, spreading particles consistently. Using this universal formulation, manufacturers could adopt inkjet printing as a cheap, easy-to-access strategy for the fabrication of electronic devices and sensors. The new inks also avoid the use of polymers or surfactants - commercial additives used to tackle the coffee ring effect, but at the same time thwart the electronic properties of graphene and other 2D materials.

Most importantly, the new methodology enables reproducibility and scalability - researchers managed to print 4500 nearly identical devices on a silicon wafer and plastic substrate. In particular, they printed gas sensors and photodetectors, both displaying very little variations in performance. Previously, printing a few hundred such devices was considered a success, even if they showed uneven behaviour.

"Understanding this fundamental behaviour of ink droplets has allowed us to find this ideal solution for inkjet printing all kinds of two-dimensional crystals," said first author Guohua Hu. "Our formulation can be easily scaled up to print new electronic devices on silicon wafers, or plastics, and even in spray painting and wearables, already matching or exceeding the manufacturability requirements for printed devices."

Beyond graphene, the team has optimised over a dozen ink formulations containing different materials. Some of them are graphene two-dimensional 'cousins' such as black phosphorus and boron nitride, others are more complex structures like heterostructures - 'sandwiches' of different 2D materials - and nanostructured materials. Researchers say their ink formulations can also print pure nanoparticles and organic molecules.This variety of materials could boost the manufacturing of electronic and photonic devices, as well as more efficient catalysts, solar cells, batteries and functional coatings.

The team expects to see industrial applications of this technology very soon. Their first proofs of concept - printed sensors and photodetectors - have shown promising results in terms of sensitivity and consistency, exceeding the usual industry requirements. This should attract investors interested in printed and flexible electronics.

"Our technology could speed up the adoption of inexpensive, low-power, ultra-connected sensors for the internet of things," said Hasan. "The dream of smart cities will come true."
-end-
The research was funded by the EPSRC, InnovateUK and the Royal Society.

Reference:
G. Hu et al. 'A general ink formulation of 2D crystals for wafer-scale inkjet printing.' Science Advances (2020). DOI: 10.1126/sciadv.aba5029.

For more information, contact:
Tawfique Hasan
Cambridge Graphene Centre
th270@cam.ac.uk

University of Cambridge

Related Graphene Articles:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.
Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.
Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.
Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.
New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.