A novel strategy for quickly identifying twitter trolls

August 12, 2020

Two algorithms that account for distinctive use of repeated words and word pairs require as few as 50 tweets to accurately distinguish deceptive "troll" messages from those posted by public figures. Sergei Monakhov of Friedrich Schiller University in Jena, Germany, presents these findings in the open-access journal PLOS ONE on August 12, 2020.

Troll internet messages aim to achieve a specific purpose, while also masking that purpose. For instance, in 2018, 13 Russian nationals were accused of using false personas to interfere with the 2016 U.S. presidential election via social media posts. While previous research has investigated distinguishing characteristics of troll tweets--such as timing, hashtags, and geographical location--few studies have examined linguistic features of the tweets themselves.

Monakhov took a sociolinguistic approach, focusing on the idea that trolls have a limited number of messages to convey, but must do so multiple times and with enough diversity of wording and topics to fool readers. Using a library of Russian troll tweets and genuine tweets from U.S. congresspeople, Monakhov showed that these troll-specific restrictions result in distinctive patterns of repeated words and word pairs that are different from patterns seen in genuine, non-troll tweets.

Then, Monakhov tested an algorithm that uses these distinctive patterns to distinguish between genuine tweets and troll tweets. He found that the algorithm required as few as 50 tweets for accurate identification of trolls versus congresspeople. He also found that the algorithm correctly distinguished troll tweets from tweets by Donald Trump--which although provocative and "potentially misleading," according to Twitter, are not crafted to hide his purpose.

This new strategy for quickly identifying troll tweets could help inform efforts to combat hybrid warfare while preserving freedom of speech. Further research will be needed to determine whether it can accurately distinguish troll tweets from other types of messages that are not posted by public figures.

Monakhov adds: "Though troll writing is usually thought of as being permeated with recurrent messages, its most characteristic trait is an anomalous distribution of repeated words and word pairs. Using the ratio of their proportions as a quantitative measure, one needs as few as 50 tweets for identifying internet troll accounts."
-end-
Citation: Monakhov S (2020) Early detection of internet trolls: Introducing an algorithm based on word pairs / single words multiple repetition ratio. PLoS ONE 15(8): e0236832. https://doi.org/10.1371/journal.pone.0236832

Funding: The author(s) received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236832

PLOS

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.