The (neuro)science of getting and staying motivated

August 12, 2020

There is no question that motivation is one of the hardest and yet important factors in life. It's the difference between success and failure, goal-setting and aimlessness, well-being and unhappiness. And yet, why is it so hard to get motivated - or even if we do, to keep it up?

That is the question that scientists led by Professor Carmen Sandi at EPFL and Dr Gedi Luksys at the University of Edinburgh have sought to answer. The researchers worked off previous knowledge that told them two things: First, that people differ a lot in their capacity to engage in motivated behavior and that motivational problems like apathy are common in neurodegenerative and psychiatric disorders. Second, to target an area of the brain called the "nucleus accumbens".

Sitting close to the bottom of brain, the nucleus accumbens has been the subject of a lot of research. The reason is that it was quickly found to be a major player in functions like aversion, reward, reinforcement, and motivation.

To test and quantify motivation, the EPFL team designed what is known as a "monetary incentive force task". The idea is that participants perform a task with increasing - and measurable - effort and get paid sums of money that correspond to their effort. Basically, do more and get paid more.

In this study, 43 men were scanned to measure-metabolites in the nucleus accumbens in their brains with a sophisticated brain-imaging technique called "proton magnetic resonance spectroscopy", or 1H-MRS. This can specifically measure the abundance of neurochemicals in the brain, such as neurotransmitters and metabolites. Because of this 1H-MRS is used even in clinical settings to determine neurological disorders.

Subsequently, each participant was asked to squeeze a device that measures force - a dynamometer to a given level of contraction in order to earn either 0.2, 0.5, or 1 Swiss franc. This procedure was repeated for a number of 120 consecutive trials, which made performance in the task quite demanding.

The idea of the experiment was that the different sums would push participants to decide if they were going to invest energy and perform the task accordingly at each trial. The scientists also ran the experiment under isolation and group conditions to investigate the influence of competition on performance.

Once they had gathered the behavioral data, the researchers processed it through a computational model that estimated the most appropriate parameters that should be measured with regard to utility, effort, and performance functions. This allowed them to interrogate whether particular neurotransmitter levels predicted specific motivational functions.

The analysis revealed that the key to performance - and, by extension, motivation - lies within the ratio of two neurotransmitters in the nucleus accumbens: glutamine and glutamate. Specifically, the ratio of glutamine to glutamate relates to our capacity for maintaining performance over a long period of time - what the researchers term "stamina".

Another discovery was that competition seems to boost performance even from the beginning of the task. This was especially the case for individuals with low glutamine-to-glutamate ratios in the nucleus accumbens.

"The findings provide novel insights in the field of motivation neuroscience," says Carmen Sandi. "They show that the balance between glutamine and glutamate can help predict specific, computational components of motivated performance. Our approach and data can also help us develop therapeutic strategies, including nutritional interventions, that address deficits in effort engagement by targeting metabolism."
-end-
Professor Carmen Sandi's lab is part of EPFL's Brain Mind Institute, situated in the School of Life Sciences.

Other contributors

EPFL Center for Biomedical Imaging
EPFL Laboratory of Functional and Metabolic Imaging
ICM Institute for Brain and Spinal Cord

Reference

Alina Strasser, Gediminas Luksys, Lijing Xin, Mathias Pessiglione, Rolf Gruetter, Carmen Sandi. Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology13 August 2020. DOI: 10.1038/s41386-020-0760-6

Ecole Polytechnique Fédérale de Lausanne

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.