Newly Identified Molecular Mechanism Could Lead To New Approaches For Preventing Heart Attack, Stroke

August 12, 1998

UC San Francisco researchers have identified a molecular mechanism that may play an important role in activating platelets, the blood cells that coagulate to stop bleeding but also cause the clots leading to heart attack and stroke. The finding, published in the August 13 issue of Nature, requires further investigation, said the senior author of the study, Shaun R. Coughlin, MD, PhD, director of the Cardiovascular Research Institute (CRVI) and professor of medicine and cellular and molecular pharmacology at UCSF, but it could provide a new avenue for developing drugs for preventing heart attack and stroke.

The study, conducted in mice and on human platelets, explored the way in which the enzyme known as thrombin, one of several factors known to activate platelets, stimulates the blood cells into action. The initial observations in mice led the researchers to a potentially profound finding for humans.

In the mouse study, the researchers determined that thrombin is able to activate platelets by latching onto, and cleaving, a newly identified receptor in the membrane of the cells. When the enzyme (a protease) binds to the receptor, it instigates the transmembrane signaling that prompts platelet aggregation. The researchers named the receptor protease activated receptor (PAR) 4.

The investigators had previously identified a PAR in human platelets, which they named PAR1. They also had previously identified a PAR in mouse platelets, which they named PAR3.

In the current study, they created a mouse model with platelets lacking PAR3 and found that while the mice had a markedly delayed and diminished response to thrombin activation the response was not totally absent. The discovery of PAR4 explained the continued response. "We determined that PAR3 is necessary for normal thrombin responses in mouse platelets, but that PAR4 does contribute to thrombin signaling," said Coughlin.

The discovery that PAR3 and PAR4 appear to act as a dual-receptor system in mice led the researchers to examine whether human platelets also contain PAR4. The discovery that they do suggests that, in human platelets, PAR1 and PAR4 also act as a dual-receptor system. And this suggestion opens up the possibility of designing drugs tailored to this system, said Coughlin.

"It may be necessary to block both PAR1 and PAR4 in human platelets to achieve an antithrombotic effect," he said. "Alternatively," he said, "the existence of a second receptor may provide a useful margin of safety for such potentially powerful therapeutic agents."

Numerous questions about the thrombin system remain to be answered, said Coughlin. The two-receptor system may simply provide redundancy of an important molecular mechanism. Alternatively, it may provide a mechanism for responding to proteases other than thrombin or to thrombin itself over a wider range of concentrations.

"We're initially interested in seeing if there are more receptors involved in the response of platelets to thrombin or whether these two receptors fully account for thrombin signaling," he said.

A still larger question, said Coughlin, is how important the thrombin system as a whole is for activating platelets. Laboratory studies indicate that thrombin is a potent stimulator of platelets, but other factors contribute to platelet aggregation, as well. "Thrombin is a potent activator of platelets under experimental conditions, but other activators are known, and the question of what happens when platelets in living animals or people cannot respond to thrombin has not been answered. We suspect thrombin plays a critical role, but that role has yet to be proven conclusively."

Co-investigators of the UCSF study were Mark L. Kahn, MD, an assistant research physician, CVRI, Yao-Wu Zheng, PhD, an associate specialist, CVRI, Wei Huang, MD, a staff research associate, CVRI, Violeta Bigornia, BS, a staff research associate, CVRI, Dewan Zeng, PhD, formerly a postdoctoral fellow, CVRI, Stephen Moff, formerly a Sarnoff Fellow, CVRI, Robert V. Farese Jr., MD, an assistant investigator, Gladstone Institute for Cardiovascular Disease, and Carmen Tam, BS, a staff research associate, CVRI.

University of California - San Francisco

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to