Bypassing bypass surgery

August 13, 2009

Although open-heart surgery is a frequent treatment for heart disease, it remains extremely dangerous. Now groundbreaking research from Dr. Britta Hardy of Tel Aviv University's Sackler School of Medicine has shown the potential for an injected protein to regrow blood vessels in the human heart ― eliminating the need for risky surgery altogether.

In heart disease, blood vessels are either clogged or die off, starving the heart of oxygen and leaving it highly susceptible to a cardiac attack. Dr. Hardy and her research partner Prof. Alexander Battler have developed a protein-based injection that, delivered straight to muscles in the body, sparks the regrowth of tiny blood vessels. These new vessels in the heart could give millions of people around the world a new lease on life.

Research on the procedure was recently published in Biochemical Pharmacology.

A treatment without side effects or inflammation

"The biotechnology behind our human-based protein therapy is very complicated, but the goal is simple and the solution is straightforward," says Dr. Hardy. "We intend to inject our drug locally to heal any oxygen-starved tissue. So far in animal models, we've seen no side effects and no inflammation following our injection of the drug into the legs. The growth of new blood vessels happens within a few weeks, showing improved blood circulation."

The protein solution can also be added as a coating to a stent. Currently, the implantation of a stent is accompanied by a high risk for blood clots, which necessitates the use of blood thinners. "We could coat a stent with our peptide, attracting endothelial stem cells to form a film on the surface of the stent," Dr. Hardy explains. "These endothelial cells on the stent would eliminate the need for taking the blood thinners that prevent blood clots from forming."

If investment goals are met, Dr. Hardy anticipates toxicity studies and Phase I trials could be complete within two years.

Saving a leg, saving a life

The research began with the hope of preventing leg amputations, positing that proteins from the human body could be used to trigger the growth of new blood vessels. Dr. Hardy started by studying a library of peptides and testing them in the laboratory. With the assistance of philanthropic funding from the Colton family in the U.S., Dr. Hardy was able to confirm initial results. She then took some of the isolated and synthesized peptides and tested them in diabetic mice whose legs were in the process of dying.

Although diabetes is known to decrease blood circulation, Dr. Hardy found that her therapy reversed the decrease. "Within a short time we saw the formation of capillaries and tiny blood vessels. After three weeks, they had grown and merged together with the rest of the circulatory system," she says. In mice with limited blood circulation, she was able to completely restore blood vessels and save their legs. It was then a short step to studying the applicability of the research to cardiac patients.

A new therapy could be commercially available soon. Unlike studies for other drugs, clinical results with the blood vessels are practically immediate. "It's pretty obvious if there is regrowth or not. Our technology promises to regrow blood vessels like a net, and a heart that grows more blood vessels becomes stronger. It's now imaginable that, in the distant future, peptide injections may be able to replace bypass surgeries," Dr. Hardy concludes.
-end-
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading and most comprehensive center of higher learning. In independent rankings, TAU's innovations and discoveries are cited more often by the global scientific community than all but 20 other universities worldwide.

Internationally recognized for the scope and groundbreaking nature of its research programs, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.