Next generation sequencing shakes up genotype/phenotype correlation, disease discoveries

August 13, 2014

HOUSTON - (Aug. 13, 2014) - With the ability to use next generation sequencing technology, researchers have a broadened understanding of the association of genetic changes and disease causation to a much greater resolution, driving new discoveries, said clinical geneticists from Baylor College of Medicine in Houston and the University of Montreal in Canada in a perspective published today in the New England Journal of Medicine.

Authors Dr. Brendan Lee and James T. Lu of Baylor, and Dr. Phillippe Campeau of the University of Montreal, discuss the impact on the increased use of these technologies -- such as whole genome and whole exome sequencing which give insight into a person's complete DNA (whole genome) and all protein coding genes (exome) - on the expanding collection of diseases with different genetic lesions.

Now it's the genotype -- not as much the phenotype -- that drives detection of the disease, the authors noted.

"Up until about the last five years, we have had relatively crude tools to interpret whether a mutation causes a disease," said Lee, professor and interim chair of molecular and human genetics at Baylor. "Typically we could only conclude that a genetic mutation was disease causing when it caused a dramatic alteration in the protein"

As the cost of next generation sequencing continues to drop, and is used more often, scientists are observing at much greater resolution and sensitivity how subtle gene changes may be associated with unique disease presentations, even in previously undiagnosed forms of disease.

"We are observing increasing complexity in the association of disease and genes. There are many different types of mutations in many different genes that can cause a specific disease grouping or even quite different disease groups - more than we ever thought," said Lee. "Twenty years ago, we could only identify disease genes based on finding severe mutations in a recognized group of clinical features. Now we find often unique mutations in many different genes causing either similar or different disease conditions."

Use brittle bone disease for example, Lee said.

"We used to think that if you have frequent bone fractures and loose connective tissue, you have brittle bone disease caused by genetic lesions in type I collagen," he said. "Now we know that mutations in more than 13 genes can contribute to the cause of brittle bone disease. There can be really rare patients with a mutation in a very specific gene which alters its function in a unique way- not simply loss or gain of the normal function of this gene."

Lee added much of this has been driven by discoveries at Baylor's Department of Molecular and Human Genetics (the number one National Institutes of Health funded genetics program in the country) in collaboration with Baylor's Medical Genetics Laboratories and Human Genome Sequencing Center.

Next generation sequencing has taught scientists about new associations of functions of genes not appreciated before, Lee, also an investigator of the Howard Hughes Medical Institute, said. "The genetic revolution has had a huge impact on the way we study human disease and reaches every specialty in medicine."
-end-
Lu is pursuing a dual degree in medicine and research (focused on genomics) at Baylor as part of the Medical Scientist Training Program. Campeau is currently an assistant clinical professor of pediatrics at the University of Montreal and a medical geneticist at Sainte-Justine University Hospital Research Center in Montreal. Campeau is a former postdoctoral associate at Baylor.

Baylor College of Medicine

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.