Gut flora influences HIV immune response

August 13, 2014

DURHAM, N.C. - Normal microorganisms in the intestines appear to play a pivotal role in how the HIV virus foils a successful attack from the body's immune system, according to new research from Duke Medicine.

The study, published Aug. 13, 2014, in the journal Cell Host & Microbe, builds on previous work from researchers at the Duke Human Vaccine Institute that outlined a perplexing quality about HIV: The antibodies that originally arise to fight the virus are ineffective.

These initial, ineffective antibodies target regions of the virus's outer envelope called gp41 that quickly mutates, and the virus escapes being neutralized. It turns out that the virus has an accomplice in this feat - the natural microbiome in the gut.

"Gut flora keeps us all healthy by helping the immune system develop, and by stimulating a group of immune cells that keep bacteria in check," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute. "But this research shows that antibodies that react to bacteria also cross-react to the HIV envelope."

Haynes said the body fights most new infections by deploying what are known as naïve B cells, which then imprint a memory of the pathogen so the next time it encounters the bug, it knows how to fight it.

But when the HIV virus invades and begins replicating in the gastrointestinal tract, no such naïve B cells are dispatched. Instead, a large, pre-existing pool of memory B cells respond - the same memory B cells in the gut that fight bacterial infections such as E coli.

This occurs because the region of the HIV virus that the immune system targets, the gp41 region on the virus's outer envelope, appears to be a molecular mimic of bacterial antigens that B cells are primed to target.

"The B cells see the virus and take off - they make all these antibodies, but they aren't protective, because they are targeted to non-protective regions of the virus envelope."

Haynes and colleagues said the findings were confirmed in tests of people who were not infected with HIV. Among non-infected people, the researchers isolated mutated gp41-gut flora antibodies that cross-react with intestinal bacteria.

"The hypothesis now is that the gp41 antibody response in HIV infection can be derived from a pre-infection memory B cell pool triggered by gut bacteria that cross-reacts with the HIV envelope," said lead author Ashley M. Trama. "This supports the notion that the dominant HIV antibody response is influenced by previously activated memory B cells that are present before HIV infection and are cross-reactive with intestinal bacteria."

Haynes said the finding provides compelling new information for HIV vaccine development, which is the next phase of research.

"Not only can gut flora influence the development and function of the immune system, but perhaps also pre-determine our reaction to certain infections such as HIV," Haynes said.
-end-
In addition to Haynes and Trama, study authors include M. Anthony Moody, S. Munir Alam, Frederick H. Jaeger, Bradley Lockwood, Robert Parks, Krissey E. Lloyd, Christina Stolarchuk, Richard Scearce, Andrew Foulger, Dawn J. Marshall, John F. Whitesides, Thomas L. Jeffries Jr., Kevin Wiehe, Lynn Morris, Bronwen Lambson, Kelly Soderberg, Kwan-Ki Hwang, Georgia D. Tomaras, Nathan Vandergrift, Katherine J. L. Jackson, Krishna M. Roskin, Scott D. Boyd, Thomas B. Kepler and Hua-Xin Liao.

This study was supported by funds from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, through the Center of HIV/AIDS Vaccine Immunology (U19-AI067854) and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (UM1-AI100645-01); as well as from the National Cancer Institute, also part of NIH, through a Viral Oncology Training Grant (T32-CA009111).

Duke University Medical Center

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.