Researchers identify tests to diagnose invasive aspergillosis with 100 percent accuracy

August 13, 2014

Philadelphia, PA, August 13, 2014 - The fungal infection invasive aspergillosis (IA) can be life threatening, especially in patients whose immune systems are weakened by chemotherapy or immunosuppressive drugs. Despite the critical need for early detection, IA remains difficult to diagnose. A study in The Journal of Molecular Diagnostics compared three diagnostic tests and found that the combination of nucleic acid sequence-based amplification (NASBA) and real-time quantitative PCR (qPCR) detects aspergillosis with 100% accuracy.

IA is caused by the fungus Aspergillus fumigatus, which is considered by many pathologists to be the world's most harmful mold. "Traditional diagnostic methods, such as culture and histopathology of infected tissues, often fail to detect Aspergillus," comments lead investigator Yun Xia, PhD, of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

In this retrospective study, scientists evaluated the diagnostic performance of two nucleic acid amplification assays (qPCR and NASBA) and one antigen detection method (galactomannan enzyme-linked immunosorbent assay [GM-ELISA]) using blood samples collected from 80 patients at high risk of IA. Of the 80 patients, 42.5% had proven or probable IA. The patients came from intensive care, hematology, neurology, nephrology, geriatrics, and other hospital departments.

The tests were evaluated singly and in combination. Individually, NASBA had the highest sensitivity (76.47%) whereas qPCR offered the highest specificity (89.13%). NASBA also was the test that best indicated that a patient did not have the infection (negative predictive value). NASBA and qPCR each had a high Youden index, a measure of the effectiveness of a diagnostic marker.

Combining the tests improved the outcomes. The combination of NASBA and qPCR led to 100% specificity and 100% positive predictive value (the probability that subjects truly have the infection).

"Because each test has advantages and disadvantages, a combination of different tests may be able to provide better diagnostic value than is provided by a single test," says Dr. Xia. The combination of NASBA and qPCR should be useful in excluding IA in suspect cases, thus reducing both suffering and expense for immunocompromised patients. On the other hand, the combination of NASBA and qPCR could be more suitable for screening patients suspected of infection, because this assay had the highest sensitivity."

The authors note that NASBA offers the advantages of rapid amplification (90 minutes) and simple operation with low instrument cost compared with qPCR and GM-ELISA. They caution that although GM-ELISA is widely and routinely used for aspergillosis diagnosis, this study indicates that it had low sensitivity (52.94%) with reasonable specificity (80.43%), making it "inferior to both NASBA and qPCR."

The A. fumigatus mold is ubiquitous in the environment and is found on decaying plant matter. For healthy individuals exposure to the fungus can be inconsequential, but it can cause significant morbidity and mortality for those with compromised immune systems, including patients who have undergone organ transplants or have advanced AIDS. Even patients with more modest immune impairments, such as diabetes, poor nutrition, steroid use, or lung disease, can become severely infected. Symptoms may include fever, cough, difficulty breathing, chest pain, seizures, and focal neurological problems.

The criteria for high risk for IA included high (1,3)-β-D-glucan levels (>60 pg/mL), immunocompromised status, and one of six conditions (recipient of an allogeneic stem cell transplant, hematological disease, severe immunodeficiency, prolonged use of corticosteroids, fever or chest infiltrate unresponsive to routine antibiotics, or radiological indication of fungal disease). Patients did not receive any antifungal therapy until after blood samples were collected.

The first test was the measurement of GM, a polysaccharide component of the fungal cell wall, which can be released into serum and bronchoalveolar lavage fluid during infection. GM was measured using a commercially available ELISA kit (Platelia Aspergillus; Bio-Rad Laboratories, Hercules, CA). In this study, a GM index (GMI) of 0.5 was used.

The second test was an Aspergillus DNA extraction and real-time qPCR assay. The DNA was extracted from plasma using a QIAamp blood mini kit (Qiagen, Hilden, Germany). The purified DNA was then amplified by an Aspergillus genus-specific qPCR assay using SYBR Green chemistry and primers targeting the 28S rRNA gene. The lower limit of detection was empirically determined to be 10 colony-forming units of Aspergillus conidia per reaction.

The third test was an Aspergillus RNA extraction and NASBA assay. Total RNA was extracted from plasma using a blood/liquid sample total RNA rapid extraction kit (BioTeke, Beijing, China). A highly conserved 18S rRNA region specific for the Aspergillus genus was chosen as the detection target. It was then amplified using a pair of primers. Blank control, negative control (RNA extracted from patients without Aspergillus infection) and positive control (RNA extracted from Aspergillus in pure culture) were included in each run.
-end-


Elsevier Health Sciences

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.