NIH announces winners of 2014 Undergraduate Biomedical Engineering Competition

August 13, 2014

Four winning teams were announced in the Design by Biomedical Undergraduate Teams (DEBUT) challenge, a biomedical engineering design competition for teams of undergraduate students. The judging was based on four criteria: the significance of the problem being addressed; the impact on clinical care; the innovation of the design; and the existence of a working prototype. The first place team will receive $20,000, second $15,000 and the two teams that tied for third will both receive $10,000 in a ceremony at the annual Biomedical Engineering Society (BMES) conference in October. The challenge was managed by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), which is a part of the National Institutes of Health.

The first place winning project, AccuSpine, addresses the problem of postoperative neurological or vascular complications that result from the more than 20 percent of screws placed incorrectly along the spine during the nearly 500,000 spinal fusion surgeries performed each year in the United States. The undergraduate team of seven students from Johns Hopkins University, Baltimore, designed an improved pedicle probe, a device used to create a path for the screws, aimed at reducing breaches in spinal fusion procedures. The AccuSpine provides feedback to the surgeon through vibrations and LED lights, warning them when a breach is detected.

Second place was awarded to the Sensory Substitution Glove project by a team of three seniors from Boston University. The glove was created to supplement the traditional white cane used by those with visual impairments. While the cane can help warn people of immediate impediments, it cannot sense obstacles at head-height or give much warning of sudden drop-offs, giving its users very little time to react. Ultrasound and infrared sensors, an accelerometer, a microprocessor, and a small speaker attached to the back of the glove scan the surroundings to provide vibrational signals that give the user a broader understanding of the world around him without limiting the use of the hand. By simply making different gestures, the user can adapt the sensor area, creating a wider or narrower sensing angle depending on the needs of the moment.

Third place prize was shared by two innovative projects. The first, Nutriflow, created by a team from Rice University, Houston, addresses a problem associated with tube feeding of mother's breast milk in infants who are of low birth weight. In current feeding systems, up to 50 percent of the fat content in breast milk can separate from the aqueous portion of milk, adhering to the bag and tube and never reaching the infant. Since the fat contains essential nutrients and calories, this can slow weight gain and cause other adverse health effects. The Nutriflow device is a low cost solution that flips the feed bag at regular intervals which keeps the fat from separating out of the milk. In addition, every five minutes the milk in the tube is diverted from the infant back to the bag for further mixing, reducing the amount of time milk is stagnant. The system has been shown to increase the fat content that reaches the infant from about 58 percent up to 95 percent.

The second, A Diaper Based System for Neonatal Urine Collection, Dehydration Assessment and Bacterial Infection Detection, was designed by a team from the University of California, Riverside, to provide an early warning of illness from dehydration or bacterial infection in countries where current technologies are not available. The system is inexpensive and does not require electricity or a clinic to confirm the results. A simple diaper liner changes color to confirm low pH (dehydration) as well as leukocytes, nitrites, and other chemical changes that indicate severe problems, providing a low cost, point-of-care diagnosis.

"We are very proud to announce the winning projects," said NIBIB Director Roderic I. Pettigrew, Ph.D., M.D. "All four of them show how a fresh perspective can create inexpensive, effective, and transformative technologies to solve longstanding challenges in healthcare. I am excited to see how this next generation of biomedical engineers will continue to create technology that is better, faster, and less costly."

There were 63 eligible entries received from 33 universities in 19 different states.
-end-
About the National Institute of Biomedical Imaging and Bioengineering (NIBIB): The NIBIB's mission is to support multidisciplinary research and research training at the crossroads of engineering and the biological and physical sciences. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website.

About the National Institutes of Health (NIH): The NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. More information is available at the NIH website.

NIH/National Institute of Biomedical Imaging & Bioengineering

Related Breast Milk Articles from Brightsurf:

The "gold" in breast milk
Breast milk strengthens a child's immune system, supporting the intestinal flora.

Is COVID-19 transmitted through breast milk? Study suggests not likely
A recent study by researchers at University of California San Diego School of Medicine suggests transmission of COVID-19 through breast milk is not likely.

Mom and baby share 'good bacteria' through breast milk
A new study by researchers at the University of British Columbia and the University of Manitoba has found that bacteria are shared and possibly transferred from a mother's milk to her infant's gut, and that breastfeeding directly at the breast best supports this process.

Pasteurizing breast milk inactivates SARS-CoV-2
Pasteurizing breast milk using a common technique inactivates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) making it safe for use, according to new research in CMAJ (Canadian Medical Association Journal). ttps://www.cmaj.ca/content/cmaj/early/2020/07/09/cmaj.201309.full.pdf

Breast milk may help prevent sepsis in preemies
Researchers at Washington University School of Medicine in St. Louis and Mayo Clinic in Rochester, Minn., have found -- in newborn mice -- that a component of breast milk may help protect premature babies from developing life-threatening sepsis.

New study associates intake of dairy milk with greater risk of breast cancer
Intake of dairy milk is associated with a greater risk of breast cancer in women -- up to 80% depending on the amount consumed -- according to a new study conducted by researchers at Loma Linda University Health.

Study: Difference in breast milk concentrations impacts growth up to age 5
In a new study, researchers at University of California San Diego School of Medicine confirmed the findings of previous pilot studies that found an association between human milk concentrations and infant weight and body composition.

Component of human breast milk enhances cognitive development in babies
CHLA investigators show that early exposure to a carbohydrate found in breast milk, called 2'FL, positively influences neurodevelopment.

Photoinitiators detected in human breast milk
Photoinitators (PIs) are compounds used in the ink of many types of food packaging.

Informal sharing of breast milk gains popularity among women, despite safety risks
Women who are unable to produce enough breast milk for their children are increasingly turning to 'mother-to-mother' informal milk-sharing, a potentially unsafe practice that is discouraged by the pediatric medical community, according to new research being presented at the American Academy of Pediatrics (AAP) 2019 National Conference & Exhibition.

Read More: Breast Milk News and Breast Milk Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.