Nav: Home

Astronomers discover 'young Jupiter' exoplanet

August 13, 2015

Athens, Ga. - A team of astronomers that includes University of Georgia professor Inseok Song has discovered a Jupiter-like planet within a young star system that could serve as a decoder ring for understanding how planets formed around the sun.

The new planet, called 51 Eridani b, is the first exoplanet discovered by the Gemini Planet Imager, a new instrument operated by an international collaboration headed by Bruce Macintosh, a professor of physics in the Kavli Institute at Stanford University. It is the faintest exoplanet on record and also shows the strongest methane signature ever detected on an alien planet, which should yield additional clues as to how the planet formed.

The results were published in the current issue of Science and describe the first major discovery from more than 10 years of collective efforts by more than 50 researchers.

The Gemini Planet Imager was designed specifically for discovering and analyzing faint, young planets orbiting stars. After GPI was installed on the 26-foot Gemini South Telescope in Chile, the team set out to look for planets orbiting young stars. They've looked at almost a hundred stars so far.

"This is exactly the kind of planet we envisioned discovering when we designed GPI," said James Graham, professor at the University of California, Berkeley and project scientist for GPI.

Once the astronomers zeroed in on the star, they blocked its light and spotted 51 Eridani b orbiting a little farther away from its parent star than Saturn does from the sun. Even though the light from the planet is very faint--nearly a million times fainter than its star--subsequent observations revealed that it is roughly twice the mass of Jupiter.

In addition to being the faintest planet ever imaged, it's also the coldest--800 degrees Fahrenheit, whereas others are around 1,200 degrees--and features the strongest atmospheric methane signal on record. Previous Jupiter-like exoplanets have shown only faint traces of methane, far different from the heavy methane atmospheres of the gas giants in this solar system.

All of these characteristics, the researchers say, point to a planet that is very much what models suggest Jupiter was like in its infancy.

In addition to expanding the universe of known planets, GPI will provide key clues as to how solar systems form.

The gas giants in this solar system formed by building up a large core over a few million years and then pulling in a huge amount of hydrogen and other gasses to form an atmosphere. But Jupiter-like exoplanets that have been discovered so far are much hotter than models have predicted, hinting that they could have formed much faster as material collapses quickly to make a very hot planet.

"This discovery is one of many imaging detections of exoplanets to come in the next few years," said Song, an associate professor in the department of physics and astronomy in the UGA Franklin College of Arts and Sciences and co-principal investigator on the GPI exoplanet survey team. "Unlike most of the currently known confirmed exoplanets, these GPI images of exoplanets allow us to examine planetary atmospheric information, which will eventually allow astronomers to examine biosignatures from mature planets during the next decade."
-end-
The study is available at http://www.sciencemag.org/lookup/doi/10.1126/science.aac5891.

University of Georgia

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.