Nav: Home

Historic space weather could clarify what's next

August 13, 2018

  • Data from historic space weather may help us understand what's coming next - new research from the University of Warwick
  • Scientists have discovered an underlying repeatable pattern in how space weather activity changes with the solar cycle - having analysed solar activity for the last half century
  • Breakthrough will allow better understanding and planning for space weather, and for any future threats it may pose to Earth
  • Space weather can disrupt electronics, aviation and satellite systems and communications - and is difficult to forecast
Historic space weather may help us understand what's coming next, according to new research by the University of Warwick.

Professor Sandra Chapman, from Warwick's Centre for Fusion, Space and Astrophysics, led a project which charted the space weather in previous solar cycles across the last half century, and discovered an underlying repeatable pattern in how space weather activity changes with the solar cycle.

The sun goes through solar cycles around every eleven years, during which time the number of sunspots increases to the maximum point (the 'solar maximum'). More solar activity means more solar flares, which in turn can mean more extreme space weather at earth.

This breakthrough will allow better understanding and planning for space weather, and for any future threats it may pose to the Earth.

Space weather can disrupt electronics, aviation and satellite systems and communications - this depends on solar activity, but as this is different for each solar cycle, the overall likelihood of space weather events can be difficult to forecast.

This exciting research shows that space weather and the activity of the sun are not entirely random - and may constrain how likely large weather events are in future cycles.

Sandra Chapman, Professor from the University of Warwick's Department of Physics and the lead author, commented:

"We analysed the last five solar maxima and found that although the overall likelihood of more extreme events varied from one solar maximum to another, there is an underlying pattern to their likelihood, which does not change.

"If this pattern persists into the next solar maximum, our research, which constrains how likely large events are, will allow better preparation for potential space weather threats to Earth."

The drivers of space weather, the sun and solar wind, and the response seen at Earth, have now been almost continually monitored by ground and space based observations over the last five solar cycles (more than fifty years).

Each solar cycle has a different duration and peak activity level, and, as a consequence the climate of Earth's space weather has also been different at each solar maximum.

The more extreme events are less frequent so that it is harder to build up a statistical picture of how likely they are to occur.
-end-
Notes to editors:

Image: Professor Sandra Chapman, credit University of Warwick - click for high res.?

'Reproducible aspects of the climate of space weather over the last five solar cycles' is published in Space Weather. It is authored by S. C. Chapman, N. W. Watkins and E. Tindale.

DOI: https://doi.org/10.1029/2018SW001884

Sandra Chapman is Professor at the University of Warwick and is currently a UK-US Fulbright-Lloyd's of London Scholar hosted at Boston University, USA. Nick Watkins is a visiting Professor at the London School of Economics and Open University, and a visitor to the University of Warwick. Liz Tindale is a PhD student at Warwick and is funded by a UK STFC Studentship.

University of Warwick

Related Space Weather Articles:

Space Weather causes years of radiation damage to satellites using electric propulsion
The use of electric propulsion for raising satellites into geostationary orbit can result in significant solar cell degradation according to a new study being presented at the Royal Astronomical Society's National Astronomy Meeting.
Historic space weather could clarify what's next
Historic space weather may help us understand what's coming next, according to new research by the University of Warwick.
Satellite measurements of the Earth's magnetosphere promise better space weather forecasts
A Japan-based research team led by Kanazawa University equipped the Arase satellite with sensors to study the convoluted interactions between high-energy particles in the inner magnetosphere and the Earth's electric and magnetic field.
New network is installed to investigate space weather over South America
Magnetometer network identifies magnetic field disturbances that can cause interference in electronic appliances, power grids and satellite navigation systems.
Space weather, EarthScope, and protecting the national electrical grid
Geomagnetic disturbances from solar storms or electromagnetic pulse weapons pose a high risk to the electrical power grid.
NASA Ppotects its super heroes from space weather
When astronauts travel in space they can't see or even feel radiation.
NASA mission surfs through waves in space to understand space weather
NASA's Van Allen Probes have observed a new population of space sound waves, called plasmaspheric hiss, which are important in removing high-energy particles from around Earth that can damage satellites.
Space weather events linked to human activity
Human activities, like nuclear tests and radio transmissions, have been changing near-Earth space and weather, and have created artificial radiation belts, damaged satellites and induced auroras.
Space weather model simulates solar storms from nowhere
A kind of solar storm has puzzled scientists for its lack of typical warning signs: They seem to come from nowhere, and scientists call them stealth CMEs.
Living with a star: NASA and partners survey space weather science
Storms from the sun can affect our power grids, railway systems and underground pipelines.
More Space Weather News and Space Weather Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.