Scarlet macaw DNA points to ancient breeding operation in Southwest

August 13, 2018

Somewhere in the American Southwest or northern Mexico, there are probably the ruins of a scarlet macaw breeding operation dating to between 900 and 1200 C.E., according to a team of archaeologists who sequenced the mitochondrial DNA of bird remains found in the Chaco Canyon and Mimbres areas of New Mexico.

Remains of a thriving prehistoric avian culture and breeding colony of scarlet macaws exist at the northern Mexican site of Paquimé, or Casas Grande. However, this community existed from 1250 to 1450, well after the abandonment of Chaco Canyon, and could not have supplied these birds to Southwest communities prior to the 13th century, said Richard George, graduate student in anthropology, Penn State.

Historically, scarlet macaws lived from South America to eastern coastal Mexico and Guatemala, thousands of miles from the American Southwest. Previously, researchers thought that ancestral Puebloan people might have traveled to these natural breeding areas and brought birds back, but the logistics of transporting adolescent birds are difficult. None of the sites where these early macaw remains were found contained evidence of breeding -- eggshells, pens or perches.

"We were interested in the prehistoric scarlet macaw population history and the impacts of human direct management," said George. "Especially any evidence for directed breeding or changes in the genetic diversity that could co-occur with different trade networks."

The researchers sequenced the mitochondrial DNA of 20 scarlet macaw specimens, but were only able to obtain full sequences from 14. They then directly radiocarbon-dated all 14 birds with complete or near complete genomes and found they fell between 900 and 1200 CE.

"We looked at the full mitochondrial genome of over 16,000 base pairs to understand the maternal relationships represented in the Chaco Canyon and Mimbres regions," said George.

Mitochondrial DNA exists separate from the cell nucleus and is inherited directly from the mother. While nuclear DNA combines the DNA inherited from both parents, mitochondrial DNA can show direct lineage because all siblings have the same mtDNA as their mother, and she has the same mtDNA as her own siblings and mother, all the way back through their ancestry.

Scarlet macaws in Mexico and Central America have five haplogroups -- genetically similar, but not identical mitochondrial DNA lines -- and each haplogroup has a number of haplotypes containing identical DNA lines. The researchers found that their scarlet macaws were all from haplogroup 6 and that 71 percent of the birds shared one of four unique haplotypes. They report the results of this analysis today (Aug 13) in the Proceedings of the National Academy of Sciences.

The researchers found that the probability of obtaining 14 birds from the wild and having them all come from the same haplogroup, one that is small and isolated, was extremely small. A better explanation, especially because these specimens ranged over a 300-year period, is that all the birds came from the same breeding population and that this population existed somewhere in the American Southwest or northern Mexico.

"These birds all likely came from the same source, but we don't have any way to support that assumption without examining the full genome," said George. "However, the genetic results likely indicate some type of narrow breeding from a small founder population with little or no introgression or resupply."

However, no one has found macaw breeding evidence dating to the 900 to 1200 period in the American Southwest or northern Mexico.

"The next step will be to analyze macaws from other archaeological sites in Arizona and northern Mexico to narrow down the location of this early breeding colony," said Douglas Kennett, professor and head of anthropology, Penn State, and co-director or the project.
-end-
Also at Penn State working on the project are Brendan Culleton, research associate in anthropology; and Thomas Harper, postdoctoral scholar in anthropology.

Other researchers were co-director Stephan Plog, David A. Harrison Professor of Archaeology, University of Virginia; Adam Watson, anthropology; George Amato, director, Conservation Genomics, Sackler Institute for Comparative Genomics; Peter Whitley, curator,

Division of Anthropology; Kari Schmidt, graduate student, Sackler Institute for Comparative Genomics, all at the American Museum of Natural History. Steven LeBlanc, former Director of Collections at the Peabody Museum of Archaeology and Ethnology, Harvard University; Logan Kistler, curator, archaeology, Smithsonian Institute; and Patricia Gilman, professor emerita of anthropology, University of Oklahoma were also on the project..

Penn State

Related Mitochondrial DNA Articles from Brightsurf:

Single-cell analysis provides new insights into mitochondrial diseases
Investigators led by a team at Massachusetts General Hospital (MGH) have made discoveries at the single cell level to uncover new details concerning mitochondrial diseases-- inherited disorders that interfere with energy production in the body and currently have no cure.

How to precisely edit mitochondrial DNA
A gene editing tool based on a bacterial toxin can make precise changes to mitochondrial DNA inside cells.

New molecular tool precisely edits mitochondrial DNA
The precision editing technologies that have revolutionized DNA editing in the cell nucleus have been unable to reach the mitochondrial genome.

First simulation of a full-sized mitochondrial membrane
Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes.

Cell biology -- maintaining mitochondrial resilience
Mitochondria cannot autonomously cope with stress and must instead call on the cell for help.

Increasing food intake by swapping mitochondrial genomes
To uncover the relationship between variation in genes and phenotypic diversity, geneticists use a set of fully sequenced fruit-fly genomes.

Structure of a mitochondrial ATP synthase
SciLifeLab researchers Alexander Mühleip and Alexey Amunts from Stockholm University solved the structure of a mitochondrial ATP synthase with native lipids.

New research tool for studying mitochondrial disorders and aging
Researchers at Karolinska Institutet in Sweden have developed a new research tool for studying how mitochondrial protein synthesis is affected by disease, pharmaceuticals, ageing and different physiological situations such as exercise and diet.

Why the lettuce mitochondrial genome is like a chopped salad
The genomes of mitochondria are usually depicted as rings or circles.

Researchers can finally modify plant mitochondrial DNA
Researchers in Japan have edited plant mitochondrial DNA for the first time, which could lead to a more secure food supply.

Read More: Mitochondrial DNA News and Mitochondrial DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.