Foraging for information: Machine learning decodes genetic influence over behavior

August 13, 2019

Mice scurry around while foraging for food, but genetics may be the unseen hand controlling these meandering movements. Researchers at University of Utah Health are using machine learning to draw links between genetic controls that shape incremental steps of instinctive and learned behaviors. The results are available online in Cell Reports on August 13.

"Patterns of complex behavior, like searching for food, are composed of sequences that feel random, spontaneous and free," said Christopher Gregg, Ph.D., assistant professor in Neurobiology and Anatomy at U of U Health and senior author of the study. "Using machine learning, we are finding discrete sequences that are reproduced more frequently than you would expect by chance and these sequences are rooted in biology."

The research team is venturing into the new territory of behavioral sequencing.

"We are trying to understand the architecture of complex behavior and how genetics shape these patterns," said Gregg.

The research supports the idea that complex behavior is composed of a collection of finite 'building blocks' the authors call behavioral modules, and that genetics are controlling the progression of these building blocks to form different behavioral patterns.

The research team evaluated 190 mice with differences in their genetics and age as they moved from their home into a uniquely created 'arena' to evaluate the set of behavioral sequences expressed while foraging for food. In the search for food, mice exhibit behaviors that require many neural systems to control seeking-behaviors, anxiety, reward, preservation, hunger, satiety, attention, navigation and memory. The new methods revealed that different genetic and age effects influence different sequences.

"Most species have a home range and their behaviors are structured around this home range," Gregg said. "We were able to identify reproduceable behavioral sequences and use this information to understand the complex patterns over time."

The team separated round trips from home to a food source and back into a series of more than 5,600 mouse actions. Layered within these actions are additional information, such as gait pattern, velocity, distance traveled and locations visited. Using machine learning, they evaluated this information and identified 71 reproduceable behavioral sequences that are the underlying building blocks for more complex behavior patterns.

The transition from one 'building block' to the next implies a mechanistic relationship that yields specific foraging behaviors that minimize predation risk, energy expenditure and caloric intake. In addition, the algorithm was able to identify spontaneous responses that are unique to specific mice.

Gregg believes this approach is sensitive enough to pick up a mutation in the copy of one gene. To prove this point, his team focused on foraging behaviors in mice with a mutation in an imprinted gene, Magel2, which is linked to autism. For example, when the mother's copy is turned off, the father's copy is turned on. In this scenario, it was widely believed that the mother's copy was silent and did not affect the offspring. Not so.

"What was exciting to us was we were able to detect significant effects on behavior from a single mutation in only the mother's gene copy," Gregg said.

At this time, the study has only explored the building blocks of foraging behavior in lab mice. Gregg believes the methodology could be applied to understand the basis of other complex behavior patterns and learn the specific genomic elements that shape behaviors leading to disease in humans, including obesity, addiction, fear, anxiety and psychiatric disorders.

"By deconstructing really complex, seemingly spontaneous behaviors, we were able to detect things that weren't observable in other studies," Gregg said. "If there is a mutation that causes disease in people we hope to use this method to map it to specific modules [aka behavior building blocks] to learn how genes contribute to shaping particular behavior patterns."
-end-
Gregg was joined by Cornelia Hörndli, Eleanor Wong, Elliott Ferris, Kathleen Bennett, Susan Steinwand, Alexis Rhodes and P. Thomas Fletcher on the paper, titled Complex Economic Behavior Patterns Are Constructed from Finite, Genetically Controlled Modules of Behavior. The work received support from the Swiss National Science Foundation, the National Institutes of Health and the New York Stem Cell Foundation.

About University of Utah Health

University of Utah Health provides leading-edge and compassionate medicine for a referral area that encompasses 10% of the U.S., including Idaho, Wyoming, Montana and much of Nevada. A hub for health sciences research and education in the region, U of U Health has a $356 million research enterprise and trains the majority of Utah's physicians and more than 1,250 health care providers each year at its Schools of Medicine and Dentistry and Colleges of Nursing, Pharmacy and Health. With more than 20,000 employees, the system includes 12 community clinics and four hospitals. For nine straight years, U of U Health has ranked among the top 10 U.S. academic medical centers in the Vizient Quality and Accountability Study, including reaching No. 1 in 2010 and 2016.

University of Utah Health

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.