Single-cell analysis provides new insights into mitochondrial diseases

August 13, 2020

BOSTON - Investigators led by a team at Massachusetts General Hospital (MGH) have made discoveries at the single cell level to uncover new details concerning mitochondrial diseases-- inherited disorders that interfere with energy production in the body and currently have no cure. The findings, which are published in the New England Journal of Medicine, could eventually benefit affected patients.

Mitochondrial diseases result from failure of mitochondria, specialized compartments within cells that contain their own DNA and produce the energy needed to sustain life. Inherited mutations in mitochondrial DNA (mtDNA) often cause these diseases, and affected patients' cells contain a mixture of mutant and nonmutant mtDNA--a phenomenon called heteroplasmy. The proportion of mutant mtDNA varies across patients and among tissues within a patient. Also, symptoms range from mild to severe and depend on which cells of the body are affected.

"It is generally accepted that the fraction of mutant heteroplasmy is what determines whether or not a tissue will exhibit disease. To better understand heteroplasmic dynamics, we applied a brand new genomics technology--with single cell resolution--in which we could simultaneously determine the cell type and the fraction of mutant heteroplasmy in thousands of individual blood cells," said senior author Vamsi K. Mootha, MD, investigator in the Department of Molecular Biology at MGH.

The researchers examined mtDNA within different blood cell types from 9 individuals with MELAS, one of the most common forms of mtDNA disease associated with brain dysfunction and stroke-like episodes, with a wide range of severity across patients.

"What makes this study unique is that it is, to our knowledge, the first time anyone has been able to quantify the percentage of disease-causing mitochondrial DNA mutations in thousands of individual cells of different types from the same patient, as well as in multiple patients with inherited mitochondrial disease," said lead author Melissa A. Walker, MD, PhD, an investigator in the Department of Neurology at MGH.

The analysis revealed especially low levels of heteroplasmy in T cells, which play important roles in killing infected cells, activating other immune cells, and regulating immune responses.

"Our observations suggest that certain cell lineages within our body may have a process by which to guard against problematic mtDNA mutations, which is a potentially very exciting finding," said Walker.

Additional studies are needed to determine whether differences in heteroplasmy across immune cell types affect the cells' function, and whether assessing such heteroplasmy may help clinicians diagnose and monitor mitochondrial diseases. "Our long-term vision is that single cell genomics may lead to improved blood tests for monitoring the progression of these diseases," said Mootha.

In addition, understanding the determinants of reduced T-cell heteroplasmy may motivate new therapeutic strategies for mitochondrial diseases, which currently lack any FDA-approved treatments.

Mootha added that mtDNA mutations also occur spontaneously during normal aging. "Although our work focused on rare, inherited diseases, it has potential implications for the heteroplasmic dynamics of aging as well," he said.
-end-
The study was funded by the Marriott Foundation. Additional support was provided by the MacCurtain family, the New York Stem Cell Foundation, the National Institutes of Health, the Klarman Cell Observatory, and the Howard Hughes Medical Institute.

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $1 billion and comprises more than 8,500 researchers working across more than 30 institutes, centers and departments. In August 2019 the MGH was named #6 in the nation by U.S. News & World Report in its list of "America's Best Hospitals."

Massachusetts General Hospital

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.