Nav: Home

Pancake bonding as a new tool to construct novel metal based magnetic materials

August 13, 2020

A Canadian-Finnish collaboration has led to the discovery of a novel magnetic compound in which two magnetic dysprosium metal ions are bridged by two aromatic organic radicals forming a pancake bond. The results of this study can be utilized to improve the magnetic properties of similar compounds. The theoretical investigation of the study was carried out by the Academy Research Fellow Jani O. Moilanen at the University of Jyväskylä, whereas the experimental work was performed at the University of Ottawa in the groups of Profs. Muralee Murugesu and Jaclyn L. Brusso. The research results were published in the well-recognized chemistry journal - Inorganic Chemistry Frontiers in July 2020 - with the cover art.

Magnets are used in many modern electronic devices ranging from mobile phones and computers to medical imaging devices. Besides the traditional metal-based magnets, one of the current research interests in the field of magnetism has been the study of single-molecule magnets consisting of metal ions and organic ligands. The magnetic properties of single-molecule magnets are purely molecular in origin, and it has been proposed that in the future, single-molecule magnets could be utilized in high-density information storage, spin-based electronics (spintronics), and quantum computers.

Unfortunately, most of the currently known single-molecule magnets only exhibit their magnetic properties at low temperatures near absolute zero (?273°c), which prevents their utilization in electronic devices. The first single-molecule magnet that retained its magnetization over the boiling point of liquid nitrogen (?196 °C) was reported in 2018. This study was a considerable breakthrough in the field of magnetic materials as it demonstrated that single-molecule magnets functioning at higher temperatures can be also realized.

Excellent magnetic properties of the reported compound at the elevated temperatures originated from the optimal three-dimensional structure of the compound. In theory, similar design principles could be used for single-molecule magnets containing more than one metal ion but controlling the three-dimensional structure of multinuclear compounds is much more challenging.

Bridging organic radicals were utilized in the novel compound

Instead of fully controlling the three-dimensional structure of the reported compound, a different design strategy was utilized in this study.

"Like dysprosium ions, organic radicals also have unpaired electrons that can interact with unpaired electrons of metal ions. Thus, organic radicals can be used to control the magnetic properties of a system along with metal ions. Particularly interesting organic radicals are bridging ones as they can interact with multiple metal ions. We employed this design strategy in our study, and surprisingly, we synthesized a compound where not only one but two organic radicals bridged two dysprosium ions as well as formed a pancake bond through their unpaired electrons", Prof. Muralee Murugesu from the University of Ottawa clarifies.

"Even though the formation of the pancake bond between two radicals is well known, this was the first time that the pancake bond was observed between two metal ions. The interaction between organic radicals is often referred to as pancake bonding because the three-dimensional structure of interacting organic radicals resembles a stack of pancakes", Prof. Jaclyn L. Brusso from the University of Ottawa tells.

The pancake bond in the novel compound was very strong. Therefore, the unpaired electrons of the organic radicals did not interact strongly with the unpaired electrons of the dysprosium ions and the compound functioned as a single-molecule magnet only at low temperatures. However, the study paves the way for the new design strategy for novel multinuclear single-molecule magnets and has initiated further research.

"Computational chemistry methods provided important insights into the electronic structure and magnetic properties of the compound that can be utilized in future studies. By choosing the right kind of organic radicals we can not only control the nature of the pancake bond between the radicals but also enhance the magnetic properties of the compound overall", Academy Research Fellow Jani O. Moilanen from the University of Jyväskylä comments.
-end-
The research was funded by the Universities of Ottawa and Jyväskylä as well as by the CFI, NSERC, and Academy of Finland (Project numbers: 315829, 320015) and CSC-IT Centre for Science in Finland, the Finnish Grid and Cloud Infrastructure and Prof. H. M. Tuononen (University of Jyväskylä) are acknowledged for providing computational resources for the project.

Lin to the article in Inorg. Chem. Front., 2020, 7: https://doi.org/10.1039/D0QI00365D

Further information:

Academy Research Fellow, Jani O. Moilanen, Department of Chemistry, University of Jyväskylä, jani.o.moilanen@jyu.fi, telephone +358 408 054 849

Prof. Muralee Murugesu, Department of Chemistry and Biomolecular Sciences, University of Ottawa, m.murugesu@uottawa.ca, telephone +1 613 562 572 8

Prof. Jaclyn L. Brusso, Department of Chemistry and Biomolecular Sciences, University of Ottawa, jbrusso@uOttawa.ca, telephone +1 613 562 580 0

University of Jyväskylä - Jyväskylän yliopisto

Related Magnets Articles:

Researchers control elusive spin fluctuations in 2D magnets
A Cornell team developed a new imaging technique that is fast and sensitive enough to observe these elusive critical fluctuations in two-dimensional magnets.
Anisotropy of spin-lattice relaxations in molecular magnets
Scientists from IFJ PAN in cooperation with researchers from the Nara Women's University (Japan) and the Jagiellonian University (Poland) took another important step towards building a functional quantum computer.
Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy
Permanent magnets can, in principle, greatly simplify the design and production of the complex coils of stellarator fusion facilities.
Super magnets from a 3D printer
Magnetic materials are an important component of mechatronic devices such as wind power stations, electric motors, sensors and magnetic switch systems.
Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.
Obtaining and observing single-molecule magnets on the silica surface
Following the latest research in the field of obtaining single-molecule magnets (SMMs), scientists have taken another step on the way toward obtaining super-dense magnetic memories and molecular neural networks, in particular the construction of auto-associative memories and multi-criterion optimization systems operating as the model of the human brain.
Cloud data speeds set to soar with aid of laser mini-magnets
Tiny, laser-activated magnets could enable cloud computing systems to process data up to 100 times faster than current technologies, a study suggests.
Sustainable 3D-printed super magnets
Magnetic materials play important roles in electrical products. These materials are usually manufactured by means of established production techniques and use of rare earth metals.
Politically extreme counties may act as magnets, migration patterns suggest
In a study of county-to-county migration patterns in the US, researchers found that when people migrate, they tend to move to other counties that reflect their political preferences.
Self-assembling system uses magnets to mimic specific binding in DNA
A team led by Cornell University physics professors Itai Cohen and Paul McEuen is using the binding power of magnets to design self-assembling systems that potentially can be created in nanoscale form.
More Magnets News and Magnets Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.