Chemical Reaction Believed To Support Underground Microbes Is Now Unlikely

August 13, 1998

Findings Could Have Implications For Life On Mars And Other Planets

A critical chemical reaction previously thought to support microbial life deep below Earth's surface, and possibly on Mars, is in fact highly unlikely. The findings are reported in this week's issue of the journal Science by researchers funded by the National Science Foundation (NSF)'s Life in Extreme Environments (LeXeN) program and affiliated with the University of Massachusetts at Amherst (U. Mass.).

"This is an important step forward in our continuing efforts to understand the processes that sustain life deep beneath the earth's surface," says Mike Purdy, director of NSF's LeXeN program. "Negative findings like this are as important as positive ones in their importance to our understanding of the processes that determine the limits to life."

It had been generally accepted by scientists that hydrogen gas produced from rock could provide energy to support the growth of microorganisms living below Earth's surface, says U. Mass. microbiologist Derek Lovley. The hydrogen was thought to be produced when basalt, a common form of rock, reacts with water.

However, a research team led by Lovley has found that this concept is incorrect. Although hydrogen gas can be produced from basalt under artificial laboratory conditions, there is no hydrogen production under the conditions actually found in Earth's subsurface.

Lovley and his colleagues found that hydrogen could only be produced from the basalt when the rock was exposed to acidic conditions -- but environments containing basalt are never acidic.

"The idea that hydrogen produced from rocks could support large subsurface microbial ecosystems on Earth and possibly other planets was fascinating and was accepted by most microbiologists," Lovley says. "Unfortunately, this concept can not be supported by the available data."

From analyses of chemical and microbiological data, Lovley and collaborators Robert Anderson, U. Mass. graduate student, and Francis Chapelle, a hydrologist at the U.S. Geological Survey in South Carolina, suggest that the microorganisms are probably living on organic matter associated with the rock, not hydrogen. This is similar to the way that microorganisms grow in soil on Earth's surface.

The scientists emphasized that even though the microorganisms living deep in the Earth may make a living in a manner similar to that of surface microorganisms, they may have other unique characteristics. For example, Lovley's recent research has demonstrated that microorganisms from the earth's subsurface can be used to remove radioactive metals, as well as hydrocarbons from polluted groundwater.
-end-


National Science Foundation

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.