Researchers Aim To Prevent Wildlife From Genetic Crash-And-Burn

August 13, 1998

WEST LAFAYETTE, Ind. -- Group by group, animals such as pronghorn antelope and wild turkeys that once disappeared from America's landscape are returning as wildlife biologists reintroduce them to their native areas.

Unfortunately, the rare animals sometimes die off again, and the reintroduction isn't successful. Too often the cause may be the inevitable inbreeding that occurs in the small populations.

Gene Rhodes, a wildlife biologist at Purdue University, is improving the odds for these reintroduced species by making new use of a familiar scientific tool: biotechnology. Rhodes is comparing the genes of the introduced animals to reduce the chances of inbreeding.

"Almost every reintroduction program has stories of failures of local populations," Rhodes says. "One of the questions that biologists always ask is 'Could have this have been a genetic problem?'"

According to Rhodes, some species have gone extinct when they reached a genetic point beyond which they could not recover. "You could say that about almost any species that has disappeared. Take, for example, a species like the passenger pigeon," Rhodes says. "We know that the species declined because of hunting for the feathers. However, even after the hunting was banned, the species crashed. The population was too small to recover."

After being hunted to the edge of extinction, the problem for the pigeon became one of limited genetic variability. "What difference does this make?" Rhodes asks. "Genetic variation is the currency of evolution. By having a variety of genes in the population, the animals have the ability to adapt to their environment."

When environmental factors change, such as a harsh winter or a new disease spreading through the area, some individual animals will survive if the population is large enough because they are slightly different from the other animals. If the population has undergone inbreeding, however, the genes of the animals will all be nearly similar. If the genetics aren't right for the new environmental conditions, the entire population may disappear.

When the population of a species gets small enough to threaten the species, wildlife biologists say it has gone through a population bottleneck. "We're only working with a fraction of the total genetic variation that once was there," Rhodes says. "We've seen this with the cheetah, with the northern elephant seal, and potentially hundreds of other species."

Extreme inbreeding also can cause genetic problems. "With inbreeding you can get developmental problems such as actual structural problems -- missing legs, two heads, that sort of thing," Rhodes says. "The recessive lethal genes that are scattered through a population begin to come together and you start to see problems."

Rhodes counters the problems of inbreeding by identifying specific gene markers on an animal's chromosomes and then looking for the gene markers in other animals of the species. Wildlife biologists can then see if they need to introduce new animals to improve the genetic variability. For example:

According to Rhodes, the number of ways of looking at DNA is rapidly expanding. "Now we have the ability to look at the genetics of a large population in a short period of time, and the cost is coming down, too. Ten years ago this would have been very slow and too expensive.

"Its just like the space program, where we developed all of these new spin-off technologies from things that were needed for space travel," Rhodes says. "Wildlife biology has never been the focus of any of the big biology thrusts. The big genome mapping projects are spinning off technologies that are inexpensive enough that we can use them in wildlife management." Source: Gene Rhodes, (765) 494-3601; gener@fnr.purdue.edu

Writer: Steve Tally, (765) 494-9809; tally@aes.purdue.edu

Purdue News Service: (765) 494-2096; e-mail, purduenews@uns.purdue.edu

Purdue University

Related Genetic Variation Articles from Brightsurf:

How genetic variation gives rise to differences in mathematical ability
DNA variation in a gene called ROBO1 is associated with early anatomical differences in a brain region that plays a key role in quantity representation, potentially explaining how genetic variability might shape mathematical performance in children, according to a study published October 22nd in the open-access journal PLOS Biology by Michael Skeide of the Max Planck Institute for Human Cognitive and Brain Sciences, and colleagues.

Genetic variation unlikely to influence COVID-19 morbidity and mortality
A comprehensive search of genetic variation databases has revealed no significant differences across populations and ethnic groups in seven genes associated with viral entry of SARS-CoV-2.

Researchers find pronghorn exhibit little genetic variation despite landscape obstacles
While previous research shows landscape features such as major highways restrict the daily and seasonal movements of pronghorn and increase mortality risk, this study found little, if any, evidence that these barriers affect genetic connectivity among Wyoming pronghorn.

gnomAD Consortium releases its first major studies of human genetic variation
For the last eight years, the Genome Aggregation Database (gnomAD) Consortium (and its predecessor, the Exome Aggregation Consortium, or ExAC), has been working with geneticists around the world to compile and study more than 125,000 exomes and 15,000 whole genomes from populations around the world.

Individual genetic variation in immune system may affect severity of COVID-19
Genetic variability in the human immune system may affect susceptibility to, and severity of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19).

Genetic variation not an obstacle to gene drive strategy to control mosquitoes
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 'gene drive' technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.

Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.

A genetic tug-of-war between the sexes begets variation
In species with sexual reproduction, no two individuals are alike and scientists have long struggled to understand why there is so much genetic variation.

Scientists identify genetic variation linked to severity of ALS
A discovery made several years ago in a lab researching asthma at Wake Forest School of Medicine may now have implications for the treatment of amyotrophic lateral sclerosis (ALS), a disease with no known cure and only two FDA-approved drugs to treat its progression and severity.

Genetic variation contributes to individual differences in pleasure
Differences in how our brains respond when we're anticipating a financial reward are due, in part, to genetic differences, according to research with identical and fraternal twins published in Psychological Science, a journal of the Association for Psychological Science.

Read More: Genetic Variation News and Genetic Variation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.