Promising vaccine may provide long-lasting protection against malaria

August 14, 2002

Researchers have developed a unique vaccine that destroys a deadly toxin produced by the parasite that causes malaria, which kills more than two million people each year. The vaccine appears extremely promising in animal studies, they say.

If the drug works in humans, it could become a more effective and longer lasting anti-malarial vaccine than those currently available, according to the researchers.

Details of the research will be presented next week (Aug. 21) in Boston at the 224th national meeting of the American Chemical Society, the world's largest scientific society. The study will be published in the Aug. 15 issue of Nature.

"This research represents an exciting new approach to controlling malaria by blocking the toxin that is responsible for so many deaths," says Peter H. Seeberger, Ph.D., associate professor of chemistry at the Massachusetts Institute of Technology in Cambridge, Mass. "We hope that this is the answer, but we don't know yet."

Tests of the new vaccine in monkeys are slated to begin soon, while tests on humans could begin within two years, said Seeberger, who is co-leader of the study along with his colleague, Louis Schofield, Ph.D., of the Walter & Eliza Hall Institute of Medical Research in Melbourne, Australia.

Although other vaccines have been developed and tested against malaria, none lasts for more than a few weeks. Most target proteins on the surface of the parasite, which has the ability to change its surface proteins and eventually resist the vaccine, according to Seeberger.

The new vaccine targets the toxin instead of the parasite. Although the parasite itself lives, it is rendered harmless by the destruction of its deadly toxin, he said.

One or two shots of the vaccine are expected to provide lasting protection against the disease. If necessary, its effectiveness could be enhanced by using it in combination with other vaccines that target the malarial parasite, Seeberger said.

Malaria is a life-threatening parasitic disease transmitted by the bite of the female Anopheles mosquito, which transfers deadly one-celled parasites to human blood in an effort to nurture her eggs. The disease can be caused by one of four different parasites. The most lethal is Plasmodium falciparum, which is also responsible for the majority of infections.

Louis Schofield recently discovered that, as part of its life cycle inside its human host, the parasite releases an inflammatory toxin that appears to trigger the fever, convulsions and deaths associated with the disease.

Previous studies by Seeberger's colleagues demonstrated that small amounts of the toxin -- a tiny carbohydrate molecule called GPI -- could be used to effectively immunize mice against infection and reduce fatalities. But the human immune system does not recognize such small molecules as foreign and cannot make antibodies to destroy them.

Seeberger and Schofield designed a synthetic version of the toxin and attached it to a protein molecule in hopes that the newly created complex would be large enough for the body to recognize so that an immune response could be launched against it.

When a group of healthy, unvaccinated mice were injected with blood containing a deadly malarial parasite, all died. But when the synthetic toxin was injected into a group of healthy mice and they were subsequently injected with the parasite, 65 to 95 percent survived.

The immunized mice also had enhanced protection from severe inflammatory conditions associated with the disease, including swelling of the brain, the researchers found.

Seeberger and his colleagues are continuing to refine their vaccine formulations to achieve a 100 percent survival rate. They hope that similar results will be seen in people.

According to the World Health Organization (WHO), malaria is one of the major public health problems, along with HIV/AIDS and tuberculosis, in the poorest regions of the world. More than 90 percent of deaths from malaria occur in Africa, mostly among infants and young children. It is estimated that the disease kills one African child every 30 seconds.

More recently, a dramatic surge in the number of malaria cases occurring among U.S. travelers to areas where the disease is common has been reported.
-end-
Funding for this research was provided by the National Institutes of Health, the United Nations Development Programme/World Bank/WHO Special Program for Research and Training in Tropical Diseases, the Human Frontiers of Science Program, the Howard Hughes Medical Institute, and the Australian National Health & Medical Research Council.

The paper on this research, CARB 81, will be presented at 9:25 a.m., Wednesday, Aug. 21, at Sheraton Boston, Republic B, during the symposium, "Carbohydrate Immunology and Therapeutics."

Peter H. Seeberger, Ph.D., is an associate professor of chemistry in the department of chemistry at Massachusetts Institute of Technology in Cambridge, Mass.

Louis Schofield, Ph.D., is a researcher at the Walter & Eliza Hall Institute of Medical Research in Melbourne, Australia.

-- Mark T. Sampson


American Chemical Society

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.