Toronto researchers first to discover new genetic clue in the development of rheumatoid arthritis

August 14, 2011

(August 14, 2011-Toronto, ON) Scientists at Mount Sinai Hospital, in collaboration with researchers at the University of Toronto, University Health Network and McGill University have obtained significant new insights into the causes of rheumatoid arthritis (RA) and other autoimmune disorders including type 1 diabetes, lupus and Graves disease.

The findings represent a key initial step in realizing the full potential of genomics and personalized medicine.

In a study published online today in Nature Genetics, Dr. Katherine Siminovitch and her team identified the exact means by which an alteration in the gene PTPN22 increases risk for RA and other autoimmune disorders. The study used advanced genomics technologies that enable testing of millions of genetic markers in a single experiment to identify genes, such as PTPN22, that confer risk for disease.

The team then generated a mouse genetic model to show how the PTPN22 gene mutation impairs immune cell function and then validating their findings in humans, taking their discovery from the laboratory bench to the clinic.

The result: a more accurate understanding of how autoimmune conditions develop, and how new diagnostic tests and targeted therapies can be designed for better symptom control and potential cure.

"Our findings are particularly exciting because this study sets a new precedent for studying arthritis and other autoimmune disorders," said lead author Dr. Siminovitch, Senior Investigator and the Sherman Family Research Chair in Genomic Medicine at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, a professor at the University of Toronto, and Director of the Fred A. Litwin & Family Centre in Genetic Medicine.

"This is one of the first studies in which we have traced the steps that connect a specific genetic lesion to the development of a common, complex autoimmune condition."

Led by Dr. Siminovitch, the group used genetically modified mice in which PTPN22 had been altered to mimic a genetic mutation found in many RA patients. The effects of this change on immune cells were observed in the mice, and the studies were then repeated in human blood samples from patients with and without RA. By this means, the group honed in on the impact of a key protein called Lyp/Pep that--in healthy cells--prevents the hyper-immune responses that lead to autoimmune disorders. The group found that this gene mutation leads to decreased levels of Lyp, thereby removing a natural brake that normally prevents the inflammatory processes underlying RA and many other autoimmune conditions.

"Measuring levels of this protein will help us monitor disease severity in patients with autoimmune disorders, test the effects of various therapies including new drugs, and determine which treatments work best in specific patients," said Dr. Edward Keystone, co-author of the study and Director of the Rebecca MacDonald Centre for Arthritis and Autoimmune Disease at Mount Sinai Hospital. "We are truly seeing genomics in action with this study, and the results give us new hope for improving patient outcomes."

Dr. Keystone emphasized the importance of this type of research to the practice of medicine in general, noting that advances in genetics knowledge are allowing for earlier diagnoses and more personalized treatments that give patients better outcomes.

"Using the powerful genetic tools now available, previously cryptic diseases are being dissected and their underlying causes identified," said Dr. Jim Woodgett, the Lunenfeld's Director of Research. "Drs. Siminovitch and Keystone are at the leading edge of employing these genomic approaches for the benefit of patients, seamlessly combining their research skills with clinical insights."
-end-
Millions of Canadians are affected by autoimmune disorders that are a common cause of long-term pain and/or disability.

The study was funded by Canadian Institutes of Health Research, the Canadian Arthritis Network, and the Ontario Research Fund.

About Mount Sinai Hospital

Mount Sinai Hospital is an internationally recognized, 472-bed acute care academic health sciences centre affiliated with the University of Toronto. It is known for excellence in the provision of compassionate patient care, innovative education, and leading-edge research. Mount Sinai's Centres of Excellence include: Daryl A. Katz Centre for Urgent & Critical Care; Lawrence and Frances Bloomberg Centre for Women's & Infants' Health; Christopher Sharp Centre for Surgery & Oncology; Centre for Inflammatory Bowel Disease; Centre for Musculoskeletal Disease and the Samuel Lunenfeld Research Institute. For more information about Mount Sinai Hospital, please visit www.mountsinai.ca.

About the Samuel Lunenfeld Research Institute of Mount Sinai Hospital

The Samuel Lunenfeld Research Institute of Mount Sinai Hospital, a University of Toronto affiliated research centre established in 1985, is one of the world's premier centres in biomedical research. Thirty-six principal investigators lead research in diabetes, cancer biology, epidemiology, stem cell research, women's and infants' health, neurobiology and systems biology. For more information on the Samuel Lunenfeld Research Institute, please visit www.lunenfeld.ca.

Samuel Lunenfeld Research Institute

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.