X-ray imaging with a significantly enhanced resolution

August 14, 2017

Physicists from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Deutsches Elektronen-Synchrotron (DESY, Hamburg) have come up with a method that could significantly improve the quality of X-ray images in comparison to conventional methods. Incoherent diffractive imaging (IDI) could help to image individual atoms in nanocrystals or molecules faster and with a much higher resolution.

For more than 100 years, X-rays have been used in crystallography to determine the structure of molecules. At the heart of the method are the principles of diffraction and superposition, to which all waves are subject: Light waves consisting of photons are deflected by the atoms in the crystal and overlap - like water waves generated by obstacles in a slowly flowing stream. If a sufficient number of these photons can be measured with a detector, a characteristic diffraction pattern or wave pattern is obtained from which the atomic structure of the crystal can be derived. This requires that photons are scattered coherently, meaning that there is a clear phase relationship between incident and reflected photons. To stay with the water analogy, this corresponds to water waves that are deflected from the obstacles without vortexes or turbulences. If photon scattering is incoherent, the fixed phase relationship between the scattered photons disperses which makes it impossible to determine the arrangement of the atoms - just like in turbulent waters.

Coherent imaging has some shortcomings

But coherent diffractive imaging also has a problem: 'With X-ray light, in most cases incoherent scattering dominates, for example in the form of fluorescence resulting from photon absorption and subsequent emission,' explains Anton Classen, member of the FAU working group Quantum Optics and Quantum Information. 'This creates a diffuse background that cannot be used for coherent imaging and reduces the reproduction fidelity of coherent methods.'

Making use of incoherent radiation

It is exactly this seemingly undesirable incoherent radiation that is key to the FAU researchers' novel imaging technique. 'In our method, the incoherently scattered X-ray photons are not recorded over a longer period of time, but in time-resolved short snapshots,' explains Professor Joachim von Zanthier. 'When analysing the snapshots individually, the information about the arrangement of the atoms can be obtained.' The trick is that the light diffraction is still coherent within short sequences. However, this is only possible with extremely short X-ray flashes with durations of no more than a few femtoseconds - that is, a few quadrillionths of a second - which has only been achieved recently using free-electron lasers like the European XFEL in Hamburg or the Linac Coherent Light Source (LCLS) in California.

Visualising single molecules is possible

Since the new method uses fluorescence light, a much stronger signal than before can be obtained, which is also scattered to significantly larger angles gaining more detailed spatial information. In addition, filters can be used to measure the light of specific atomic species only. This makes it possible to determine the position of individual atoms in molecules and proteins with a significantly higher resolution compared to coherent imaging using X-ray light of the same wavelength. This method could give new impetus to the study of proteins in structural biology and medicine.
-end-


University of Erlangen-Nuremberg

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.