New approach to treating chronic itch

August 14, 2018

Two receptors in the spinal cord and the right experimental drug: Researchers at the University of Zurich have discovered a new approach that suppresses itch. In a series of experiments in mice and dogs they successfully alleviated different forms of acute as well as chronic itch. For the latter, current treatment options are very limited.

Everybody knows the unpleasant itching sensation after being bitten by a mosquito. Luckily, this kind of itch can be relieved by a number of drugs that are available on the market. These drugs, however, are largely ineffective when it comes to the unrelenting and debilitating urge to scratch experienced by patients suffering from skin, kidney or liver diseases. This chronic condition, which affects about 10 percent of the population, is currently treated with antidepressants or immune suppressants. Originally developed to treat other diseases, these drugs often fail to provide the desired relief or come with severe side effects.

Blocking itch signals

Hanns Ulrich Zeilhofer, professor at the Institute of Pharmacology and Toxicology of the University of Zurich, and his research group have now discovered a new way to alleviate itch. They used an experimental drug to boost the effect of specific neurons in the spine that prevent itch signals from being relayed to the brain. The scientists had previously located and described these neurons three years ago. Since then, they have used genetic mouse models to identify two specific receptors that control the effect of the spinal neurons. These receptors are part of a large group of receptors that is activated by the amino acid transmitter gamma-aminobutyric acid, or GABA. It is with these GABA receptors that for example benzodiazepines, a class of drugs used to treat insomnia, anxiety or epilepsy, interact.

Less scratching, quicker healing

The experimental drug used by the researchers in their study, which was originally developed as a drug for anxiety, interacts with the two identified receptors. In their experiments, the pharmacologists were able to show that it not only suppresses acute itch, but is also effective against chronic itch. Mice that were administered with the drug scratched themselves less often, and their skin changes healed significantly quicker than in animals that were given a placebo. The same itch-suppressant effect was also observed in tests with dogs carried out by the researchers in cooperation with the University of Zurich's Veterinary Department. Moreover, the drug did not cause obvious undesired side effects.

Potential benefits for humans and animals

Hanns Ulrich Zeilhofer is optimistic about the study's results: "We are confident that the substance we've tested will also be effective in humans." At the same time the findings should be very valuable for veterinary medicine, since: "Like humans, dogs also often suffer from chronic itch. They too therefore stand to benefit from the approach." The researchers see great potential in their discovery and have filed a patent application. They are cooperating with companies that develop the compound as a drug for use in human and veterinary medicine.
-end-


University of Zurich

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.