Nav: Home

Healthy fat cells uncouple obesity from diabetes

August 14, 2018

About 422 million people around the world, including more than 30 million Americans, have diabetes. Approximately ninety percent of them have type 2 diabetes. People with this condition cannot effectively use insulin, a hormone made by the pancreas that helps the body turn blood sugar (glucose) into energy.

The inability to use insulin, called insulin resistance, results in increasing levels of blood sugar, which, if not controlled, can significantly raise the risk of major health problems such as blindness, kidney failure, heart attacks, stroke and lower limb amputation. In 2015, the World Health Organization estimated that 1.6 million deaths were directly caused by diabetes. Until recently, this type of diabetes was only seen in adults, but it is now also occurring increasingly and more frequently in children.

"Obesity is the most significant risk factor for type 2 diabetes and other metabolic conditions, and affects one in three adults worldwide," said Dr. Sean Hartig, assistant professor of medicine and of molecular and cellular biology at Baylor College of Medicine. "Although medical consensus recommends making life style changes toward a healthy diet and increased physical activity to both prevent and help control diabetes, this strategy has shown to be difficult to implement and maintain by most people."

Hartig and his colleagues are exploring alternative ways to control obesity and type 2 diabetes that may involve the use of therapies that would complement the current efforts to educate the public about healthy diets and exercise routines. To achieve this goal, they are studying the cellular and molecular mechanisms involved in fat metabolism using both genetic mouse models and human tissues.

Subcutaneous white fat versus belly fat dictates metabolic health in obesity

Although obesity significantly increases the risk of diabetes, about 30 percent of obese people do not show insulin resistance and do not develop type 2 diabetes or other metabolic conditions, such as fatty liver disease. What leads to obesity while maintaining insulin sensitivity is not well understood; however, scientists know that the condition is associated with the body's ability to expand the storage of subcutaneous white adipose (fat) tissue.

"Subcutaneous white fat represents 80 percent of all fat tissue in mice and people and it is stored in the hips, arms and legs. When energy intake (food) overwhelms the ability to store calories in subcutaneous white fat, fat 'spills over' into organs that are not specialized for storing fat, such as the liver, the pancreas and muscle," said co-author Natasha Chernis, research technician at Baylor College of Medicine. "People who develop diabetes have more abdominal (belly) fat. Our idea is to find ways to expand subcutaneous white fat depots in obesity, so fat is not stored in places like the abdomen or the liver, where it can cause metabolic problems."

Another key player in the obesity and diabetes puzzle is the immune system. Obesity leads to developing a low-grade inflammatory response that can interfere with the metabolic functions of subcutaneous white fat tissue. This inflammatory microenvironment likely disturbs this fat tissue's ability to respond to insulin, contributing in insulin resistance and type 2 diabetes. This is supported by findings that increased levels of pro-inflammatory cytokines, such as interferon-gamma, correlate with insulin resistance, reduced subcutaneous white fat expansion and accumulation of abdominal fat. However, this brings the question, what is different in obese individuals who do not develop insulin resistance and diabetes?

Another piece of the puzzle, miR-30a

"When we started this project six years ago, our goal was to better understand fat metabolism and identify potential ways to help people lose weight," Hartig said. "We found a microRNA called miR-30a - a small non-coding RNA molecule that regulates gene expression - that could stimulate pathways important for fat metabolism. Originally, we thought that expressing miR-30a would lead to weight loss because it would be driving fat metabolism, but we observed something different. We found miR-30a did not correlate with leanness; instead, it was associated with a form of obesity in which subjects actually maintained insulin sensitivity."

Hartig and his colleagues discovered that reduced miR-30a expression in fat tissue correlated with insulin resistance in both obese mice and obese humans. Interestingly, overexpressing miR-30a in subcutaneous white fat tissue of obese mice significantly improved insulin sensitivity, reduced levels of blood lipids and decreased buildup of fat in the liver without altering body weight. In addition, the researchers found that miR-30a expression reduced inflammation in subcutaneous white fat tissue.

"We have provided evidence that expression of miR-30a protects fat cells by attenuating inflammation derived from mediators such as interferon gamma and leads to improved insulin sensitivity in obese mice," Hartig said.

These findings open the possibility of developing therapeutic entry ways for many forms of diabetes, not just diabetes aligned with obesity. For instance, targeting components of the immune system locally within adipose tissue may enable subcutaneous white fat to expand appropriately in lipodystrophies - conditions characterized by abnormal distribution of body fat - where diabetes occurs in patients without obesity.

"We are interested in this idea that we can uncouple obesity from co-morbidities such as heart disease and insulin resistance," Hartig said. "It has become clear in the past 10 years that obesity doesn't mean diabetes. We are interested in learning how to manipulate the inflammatory response inside fat tissue of people with insulin resistance or type 2 diabetes so they expand the subcutaneous white fat deposits and become metabolically healthy."

Read all the details of this study in the journal Diabetes.
-end-


Baylor College of Medicine

Related Diabetes Articles:

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.
Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.
Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.