Nav: Home

New method makes spinning collagen microfibres quicker, cheaper, and easier

August 14, 2018

Scientists in Norfolk, VA (USA) have developed a new method of making collagen microfibres, which could have applications in research, medical devices and clinical treatments ranging from ligament damage to skin burns.

While collagen fibre manufacturing methods such as electrospinning and extrusion exist for biomedical applications, they have seen limited clinical success. This is partially due to challenges of scalability, cost, and complexity.

The research team, from Eastern Virginia Medical School, The Frank Reidy Research Center for Bioelectrics at Old Dominion University and Embody LLC developed a new method called pneumatospinning.

Writing in Biofabrication, they describe how it uses a high-speed air-based technique to form collagen microfibres from clinical-grade calf skin collagen.

Lead author Dr. Michael Francis said: "Existing methods for making collagen fibre produce low volumes of material, and are very complicated and expensive. Our aim with this research was to explore a cheaper, simpler method that could produce more material faster, ultimately moving towards clinical translation."

The researchers dissolved clinical grade type-1 collagen in acetic acid. They then used a common airbrush to spray the solution (pneumatospinning), polymerizing it into cytocompatible sub-micron fibres. After stabilising the resulting collagen scaffolds, the team examined them using Fourier-transform infrared spectroscopy, circular dichroism, mechanical testing and scanning electron microscopy to show the assembly of native collagen fibre from the molecular to microscales, through mesoscale and into macroscale.

Dr Francis said: "We found the pneumatospun collagen fibres had significantly higher tensile strength compared to electrospun collagen. Also, stem cells cultured on the pneumatospun collagen showed strong cell attachment and compatibility, providing opportunities for more advanced combination therapies."

"Using dimethyl sulfoxide (DMSO) as a solvent, we were also able to make a blended, microfibrous biomaterial by pneumatospinning it with poly(d,l-lactide) This enables even more possible applications of this collagen microfibre-based manufacturing technology for other therapeutic indications with varying requirements, such as higher tensile strength and tailorable degradation kinetics, as based on clinical need."

"As a robust and rapid method of collagen microfibre synthesis, this method has many applications in medical device manufacturing. That includes those benefiting from anisotropic microstructures, such as ligament, tendon and nerve repair, for topical meshes such as ocular or wound dressings, or even for applying microfibrous collagen-based coatings to other materials, such as polymers and metals to enhance graft integration and compatibility."
-end-


IOP Publishing

Related Collagen Articles:

Implant infections could be banished thanks to scaffold breakthrough
Researchers in Ireland have taken a major step forward in the battle against medical implant infections.
Uncovering the biology of a painful and disfiguring pediatric disease
The study reveals a major physiological function for the CMG2 gene and demonstrates its interaction with collagen VI.
Untangling the knots in cell stress
In an article published in the Journal of Cell Biology, Tokiro Ishikawa and Kazutoshi Mori of Kyoto University describe how different UPR transducers are used selectively for protein correction.
Vanderbilt research unlocks molecular key to animal evolution and disease
The dawn of the Animal Kingdom began with a collagen scaffold that enabled the organization of cells into tissues.
Collagen-targeting PET probe may improve diagnosis and treatment of pulmonary fibrosis
A PET imaging probe developed by Massachusetts General Hospital investigators appears able to diagnose and stage pulmonary fibrosis -- an often life-shortening lung disease -- as well as monitor the response to treatment.
New tool for prognosis and choice of therapy for rheumatoid arthritis
In rheumatoid arthritis, antibodies are formed that affect the inflammation in the joints.
Combating wear and tear
A team of researchers led by University of Utah bioengineering professors has discovered that damage to collagen, the main building block of all human tissue, can occur much earlier at a molecular level from too much physical stress.
80-million-year-old dinosaur collagen confirmed
Utilizing the most rigorous testing methods to date, researchers from North Carolina State University have isolated additional collagen peptides from an 80-million-year-old Brachylophosaurus.
Corneal collagen cross-linking for keratoconus: Now data provide hint of benefit
Additional data from an Australian study now show an advantage over purely symptomatic treatment.
Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II
A new regenerative scaffold made of biosafe collagen hydrogel and collagensponge could possess the ability of retaining fibroblastic growth factor-2 (FGF2) and stimulate the periodontal tissue regeneration, according to new research published in The Open Dentistry Journal.

Related Collagen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".