Researchers develop improved method for studying tsunami risk to bridges, buildings, roads

August 14, 2019

CORVALLIS, Ore. - Researchers at Oregon State University are paving the way toward greater safety for coastal residents and infrastructure by developing a better means of modeling the destructive force of tsunami waves.

Rare but potentially devastating, tsunamis can cause huge damage to coastal infrastructure, with part of the problem tracing to unstable soil around the structures.

Understanding the processes through which a tsunami destabilizes soil is a key to developing engineering techniques that can make buildings, roads and bridges better able to withstand the complicated forces at work within a tsunami.

Collaborators led by Ben Mason and Harry Yeh of the OSU College of Engineering used a centrifuge that once tested Apollo astronauts' resistance to G-forces, attaching a container apparatus filled with soil and water for a scalable simulation of the effects of inundation.

The centrifuge technique replicates inundation physics over a parcel of soil 21 meters long, nearly 10 meters deep and more than 14 meters wide - much larger than can be simulated in a traditional wave tank.

"This is the first time anything like this has been done," Mason said. "The challenge of figuring out the logistics and mechanical engineering to design the container is a pretty striking aspect of this research."

Findings were published in Nature Scientific Reports.

A centrifuge is a device that puts something in rotation around a fixed axis, i.e. swings it in a circle.

"Imagine holding a 5-gallon bucket of water that you start spinning around with, and if you spin fast enough, the water will stay in the bucket regardless of its position, and if you slow down, it will pour out," Mason said. "That's exactly the concept we were working with."

The centrifuge in the study, housed at the UC Davis Center for Geotechnical Modeling after originally being part of NASA's Ames Research Center, has a radius of 9.1 meters. Attached to the arm was the apparatus Mason and collaborators built, part of it filled with water, the other part with soil, with gates to allow for flow simulating a tsunami wave.

"We're trying to mimic the entire process of a tsunami coming onshore and then drawing back," Mason said. "If you're putting soil in a wave flume to try to do that, it gets really, really expensive, and also because at Earth's gravity, you can't have a very deep layer of soil - tsunamis' spatiotemporal scales make it hard to do lab experiments that scale up. That's our key advantage: We can simulate a much larger expanse of earth, and once the box is built, it's much quicker to build soil models in the centrifuge."

"In the centrifuge, we can use high-speed video to learn a lot about what's happening in the soil, such as scouring, and under the surface, how pore water pressure changes with time as the water moves across," Mason said. "All of these things are important for understanding what we can expect the soil around coastal infrastructure to do, and then how do we protect that infrastructure when the next tsunami occurs."
-end-
The National Science Foundation supported this research. Researchers included Bruce Cutter of UC Davis and OSU graduate students Samuel Harry and Margaret Exton.

Oregon State University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.