Nav: Home

Genetic census of the human microbiome

August 14, 2019

How many stars are there in the observable universe? It was once deemed an impossible question, but astronomers have gleaned an answer--about one billion trillion of them.

Now, scientists at Harvard Medical School and Joslin Diabetes Center have embarked on what could be a similarly daunting quest: How many genes are there in the human microbiome?

In a study published Aug. 14 in the journal Cell Host & Microbe, a team of microbiologists and bioinformaticians offer a first glimpse of the array of genes that make up the bacterial universe residing in each of us.

The findings thus far: There may be more genes in the collective human microbiome than stars in the observable universe, and at least half of these genes appear to be unique to each individual--a diversity far exceeding the researchers' expectations.

The research is believed to be the largest analysis of its kind to date and the first one to include DNA samples from bacteria that reside both in the mouth and the gut. Past studies have focused on one or the other.

Even so, the work marks only the beginning of efforts to analyze the entire genome of the human microbiome.

"Ours is a gateway study, the first step on a what will likely be a long journey toward understanding how differences in gene content drive microbial behavior and modify disease risk," said study first author Braden Tierney, a graduate student at Harvard Medical School.

Microbial fingerprinting for more precise therapies

Scientists estimate that the human microbiome--the collective body of microbes that populate our guts, mouths, skin and other parts of the body--contains trillions of bacteria, most of them harmless, many beneficial and some disease causing. Mounting evidence has revealed the role of these microbes as powerful modulators of disease and health. Changes in both bacterial count and bacterial content have been linked to development of conditions ranging from garden variety dental caries and gut infections to more serious ones, including chronic inflammatory bowel disease, diabetes and multiple sclerosis.

Most research to date has focused on mapping the types of bacteria that inhabit our bodies in an effort to determine whether and how the presence of a given bacterial species might affect disease risk. By contrast, the new research delves far deeper, looking at the genes that make up the various microbial species and strains.

Studying bacterial species alone is bound to provide only partial clues into these microorganisms' role in disease and health, the researchers say. Given that genetic content varies greatly between the same microbes, understanding how and whether individual microbial genes affect disease risk is just as important.

"Just like no two siblings are genetically identical, no two bacterial strains are genetically identical, either," said study co-senior author Chirag Patel, assistant professor of biomedical informatics at Harvard Medical School's Blavatnik Institute. "Two members of the same bacterial strain could have markedly different genetic makeup, so information about bacterial species alone could mask critical differences that arise from genetic variation."

Cataloguing the array of microbial genes could inform the design of precision-targeted treatments, said study senior co-author Alex Kostic, assistant professor of microbiology at Harvard Medical School and an investigator at the Joslin Diabetes Center.

"Such narrowly targeted therapies would be based on the unique microbial genetic make-up of a person rather than on bacterial type alone," Kostic said.

Additionally, profiling the unique genes that make up a person's microbiome could act as a form of microbial fingerprinting that provides valuable clues about past exposures to different pathogens or environmental influences, as well as disease predispositions, Kostic added.

A microbe's evolutionary organ

In the study, the researchers set out to estimate the size of the universe of microbial genes in the human body, gathering all publicly available DNA sequencing data on human oral and gut microbiomes. In total, they analyzed the DNA of some 3,500 human microbiome samples, of which more than 1,400 were obtained from people's mouths and 2,100 from people's guts.

There were nearly 46 million bacterial genes in the 3,500 samples--about 24 million in the oral microbiome and 22 million in the gut microbiome, the researchers found.

More than half of all the bacterial genes (23 million) occurred only once, rendering them unique to the individual. The researchers termed these unique genes "singletons." Of the 23 million singletons, 11.8 million came from oral samples and 12.6 million came from intestinal samples.

Compounding the intrigue, these singleton genes also appeared to behave differently from other genes, the researchers observed: they performed different functions.

Commonly shared genes, the analysis showed, appeared to be involved in more or less basic functions critical to a microbe's day-to-day survival, such the consumption and breakdown of enzymes, energy conversion and metabolism. Unique genes, by contrast, tended to carry out more specialized functions, such as gaining resistance against antibiotics and other pressures and helping to build a microbe's protective cell wall, which shields it from external assaults.

This finding, the team said, suggests that singleton genes are key parts of a microbe's evolutionary survival kit.

"Some of these unique genes appear to be important in solving evolutionary challenges," Tierney said. "If a microbe needs to become resistant to an antibiotic because of exposure to drugs or suddenly faces a new selective pressure, the singleton genes may be the wellspring of genetic diversity the microbe can pull from to adapt."

But what fuels such gene diversity?

The answer to this question remains the subject of further research, the investigators said, but they believe there are at least two important drivers of genetic variation.

One is the microbes' love of freely swapping DNA material with their neighbors--a phenomenon known as horizontal gene transfer. To test this hypothesis, the researchers performed a special type of analysis that detects the shared molecular content between two organisms. To their surprise, they found little evidence that horizontal gene transfer was a main source of genetic uniqueness. Indeed, less than 1 percent of unique genes detected in oral samples and just under 2 percent of those found in the gut appeared to have arisen through this neighborly gene exchange.

Therefore, the researchers hypothesize, another, more powerful, driver of genetic diversity could be bacteria's ability to evolve their DNA rapidly in response to changes in the host environment. The current study was not designed to detect the precise environmental changes that drive this variation, but examples of such changes may include what type of food a person consumes, what medication they use, the lifestyle choices they make, what environmental exposures they encounter and any physiologic changes in the host, including upregulation and downregulation in various host genes or whether a person develops a disease.

So how many genes in the collective human microbiome?

By one calculation, that number could be around 232 million, the study estimated. Another estimate, however, yielded a number comparable to the number of atoms in the universe.

Indeed, the true number may be unknowable, Patel said.

"Whatever it may be, we hope that our catalog, along with a searchable web application, will have many practical uses and seed many directions of research in the field of host-microbe relationships."
-end-
Article DOI: 10.1016/j.chom.2019.07.008

Co-investigators included Zhen Yang, Jacob Luber, Marc Beaudin, Marsha Wibowo, Christina Baek and Eleanor Mehlenbacher.

The work was supported by the National Institutes of Health NIEHS (T32 DK110919, R00ES23504, and R21ES205052), the National Science Foundation (1636870), the National Institute of Allergy and Infectious Diseases (R01AI127250), the American Diabetes Association Pathway to Stop Diabetes Initiator Award 1-17-INI-13, and the Smith Family Foundation Award for Excellence in Biomedical Research.

Harvard Medical School

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.