ASU researchers use new tools of data science to capture single molecules in action

August 14, 2019

In high school chemistry, we all learned about chemical reactions. But what brings two reacting molecules together? As explained to us by Einstein, it is the random motion of inert molecules driven by the bombardment of solvent molecules. If brought close enough together, by random chance, these molecules may react.

Capturing the motion of single molecules is achieved by a method known as Fluorescence Correlation Spectroscopy (FCS). The catch? It takes very many detections of light particles, photons, emitted by single molecules to get a clear picture of molecular motion.

As an illustration, think of a political poll. At any given time in a campaign cycle, polls are used to predict the outcome of an upcoming election. But how many voters must we interrogate to get an accurate prediction and, given how time-sensitive polling information is, how quickly can we probe the nation's political leanings? Asking every voter in every state would yield accurate results but be too costly in time and dollars. For practical reasons, we need to take a sample of voters and efficiently exploit all information contained in that sample. The voters in this illustration are our proverbial photons here.

The long times needed to acquire data in FCS is just like the naïve polling strategy highlighted earlier. It takes too long, and the chemistry we care about learning might already be done. Furthermore, exposing samples to the laser for long periods of time may result in the photochemical damage of molecules under study, preventing the widespread use of FCS in biological research.

"Single-molecule fluorescence techniques have revolutionized our understanding of the dynamics of many critical molecular processes, but signals are inherently noisy and experiments require long acquisition times," explained Marcia Levitus, an associate professor in the School of Molecular Sciences and the Biodesign Institute.

This work leverages new tools from data science in order to make every photon detected count and refine our picture of molecular motion.

"New mathematical tools make it possible to think about old but powerful experiments in a new light," said Steve Pressé, lead author on the study and joint professor in the Department of Physics and School of Molecular Sciences at ASU at Arizona State University.

A paper published in Nature Communications by Pressé and collaborators now addresses these issues using tools from data science and, more specifically, Bayesian nonparametrics -- a type of statistical modeling tool so far largely used outside the natural sciences. Levitus adds "Old strategies limited our ability to probe anything but slow processes, leaving a vast number of interesting biological questions involving faster chemical reactions out of reach. Now we can begin asking questions on processes resolved in short order."
-end-
Pressé's team includes Sina Jazani, a graduate student, and Ioannis Sgouralis, a postdoctoral associate at the ASU Center for Biological Physics. The experimental collaborators and co-authors of the paper include Levitus from ASU and Sanjeevi Sivasankar, associate professor at the University of California, Davis, Department of Biomedical Engineering as well as his graduate student Omer Shafraz.

Arizona State University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.