UCLA computer scientists set benchmarks to optimize quantum computer performance

August 14, 2020

Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance. Specifically, their research has revealed that improving quantum compilation design could help achieve computation speeds up to 45 times faster than currently demonstrated.

The computer scientists created a family of benchmark quantum circuits with known optimal depths or sizes. In computer design, the smaller the circuit depth, the faster a computation can be completed. Smaller circuits also imply more computation can be packed into the existing quantum computer. Quantum computer designers could use these benchmarks to improve design tools that could then find the best circuit design.

"We believe in the 'measure, then improve' methodology," said lead researcher Jason Cong, a Distinguished Chancellor's Professor of Computer Science at UCLA Samueli School of Engineering. "Now that we have revealed the large optimality gap, we are on the way to develop better quantum compilation tools, and we hope the entire quantum research community will as well."

Cong and graduate student Daniel (Bochen) Tan tested their benchmarks in four of the most used quantum compilation tools. A study detailing their research was published in IEEE Transactions on Computers, a peer-reviewed journal.

Tan and Cong have made the benchmarks, named QUEKO, open source and available on the software repository GitHub.

Quantum computers utilize quantum mechanics to perform a great deal of computations simultaneously, which has the potential to make them exponentially faster and more powerful than today's best supercomputers. But many issues need to be addressed before these devices can move out of the research lab.

For example, due to the sensitive nature of how quantum circuits work, tiny environmental changes, such as small temperature fluctuations, can interfere with quantum computation. When that happens, the quantum circuits are called decoherent -- which is to say they have lost the information once encoded in them.

"If we can consistently halve the circuit depth by better layout synthesis, we effectively double the time it takes for a quantum device to become decoherent," Cong said.

"This compilation research could effectively extend that time, and it would be the equivalent to a huge advancement in experimental physics and electrical engineering," Cong added. "So we expect these benchmarks to motivate both academia and the industry to develop better layout synthesis tools, which in turn will help drive advances in quantum computing."

Cong and his colleagues led a similar effort in the early 2000s to optimize integrated circuit design in classical computers. That research effectively pushed two generations of advances in computer processing speeds, using only optimized layout design, which shortened the distance between the transistors that comprise the circuit. This cost-efficient improvement was achieved without any other major investments in technological advances, such as physically shrinking the circuits themselves.

"Quantum processors in existence today are extremely limited by environmental interference, which puts severe restrictions on the length of computations that can be performed," said Mark Gyure, executive director of the UCLA Center for Quantum Science and Engineering, who was not involved in this study. "That's why the recent research results from Professor Cong's group are so important because they have shown that most implementations of quantum circuits to date are likely extremely inefficient and more optimally compiled circuits could enable much longer algorithms to be executed. This could result in today's processors solving much more interesting problems than previously thought. That's an extremely important advance for the field and incredibly exciting."
The research was partially supported by NEC Corporation through an industrial partnership program at Center for Domain-Specific Computing at UCLA, which Cong directs.

Cong is also a member of the Center for Quantum Science and Engineering.

University of California - Los Angeles

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.