Brown physicist proposes that electron may be split

August 15, 2000

PROVIDENCE, R.I. -- In a paper published in the August issue of the Journal of Low Temperature Physics, Humphrey Maris, professor of physics at Brown University, proposes that electrons can undergo a form of fission under suitable conditions.

He has also discovered there is a significant amount of experimental evidence supporting his theory.

Physicists consider that matter in the world is composed of a large number of elementary particles. It has been regarded as a general principle of physics that an elementary particle cannot be broken into two pieces.

Maris' theory considers what happens to electrons when they are immersed in liquid helium at a temperature of one degree above absolute zero. Previous experiments have shown that an electron in helium becomes trapped in a bubble approximately 100-billionths of an inch in diameter. The bubble drifts through the liquid with the wave function of the electron confined inside it. According to quantum theory, the state of a particle is described as its wave function.

Maris shows that when the bubble is illuminated with infrared light, the bubble can divide into two smaller bubbles each containing a part of the wave function of the electron. These two bubbles can then move independently through the liquid and become separated from each other.

In the 1970s, researchers at Bell Laboratories and the University of Michigan performed experiments on the effect of light on electrons in liquid helium. These researchers were unable to explain their surprising results. Maris realized that these old experiments, together with more recent measurements made at the University of Lancaster, could be understood in terms of his theory and provided support for his ideas.

Further experiments to test the theory are underway at Brown University in work supported by the National Science Foundation.

Brown University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to