Jupiter-size planet found orbiting star in big dipper

August 15, 2001

A team of astronomers has found a Jupiter-size planet in a circular orbit around a faint nearby star, raising intriguing prospects of finding a solar system with characteristics similar to our own.

The planet is the second found to orbit the star 47 Ursae Majoris in the Big Dipper, also known as Ursa Major or the Big Bear. The new planet is at least three-fourths the mass of Jupiter and orbits the star at a distance that, in our solar system, would place it beyond Mars but within the orbit of Jupiter.

"Astronomers have detected evidence of more than 70 extrasolar planets," said Morris Aizenman, a senior science advisor at the National Science Foundation (NSF). "Each discovery brings us closer to determining whether other planetary systems have features like those of our own."

"For the first time we have detected two planets in nearly circular orbits around the same star," said team member Debra Fischer of the University of California at Berkeley. "Most of the 70 planets people have found to date are in bizarre solar systems, with short periods and eccentric orbits close to the star. As our sensitivity improves we are finally seeing planets with longer orbital period, planetary systems that look more like our solar system."

The planet-search team, which is supported by NSF and NASA, has been instrumental in finding a majority of the extrasolar planets. Besides Fischer, the team includes Geoffrey Marcy, also of Berkeley; Paul Butler of the Carnegie Institution of Washington; Steve Vogt of the University of California at Santa Cruz; and Gregory Laughlin of NASA's Ames Research Center. Their report on the new planet has been submitted to Astrophysical Journal.

A few years ago, Marcy and Butler discovered a planet more than twice the mass of Jupiter in a circular orbit around the same star. The star is one of 100 that the scientists have targeted since 1987 in their search for evidence of extrasolar planets. They use the 3-meter and 0.6-meter telescopes at the University of California's Lick Observatory to measure Doppler shifted light reaching the earth from stars. Regular changes in the Doppler shift, they believe, signal the presence of a planet periodically pulling the star toward or away from Earth.

Fischer was able to see the periodic wobble from the second planet, smaller and farther from the star than the first, because of improved instrumentation that can measure motions as small as three meters per second.

The star is a yellow star similar to the sun, probably about seven billion years old and located about 51 light years from Earth.

"Every new planetary system reveals some new quirk that we didn't expect. We've found planets in small orbits and wacky eccentric orbits," said Marcy. "With 47 Ursae Majoris, it's heartwarming to find a planetary system that finally reminds us of our solar system."
-end-
For a list of extrasolar planets, see: www.exoplanets.org

Media Contacts:
Donald Savage, NASA
202-358-1547/dsavage@hq.nasa.gov

Program Contact:
Vernon Pankonin, NSF
703-292-4902/vpankoni@nsf.gov

Image available at: http://www.nsf.gov/od/lpa/news/press/01/newplanet.htm

National Science Foundation

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.