UCLA develops new model to predict the spread of a 'super-bug' in L.A. county jail

August 15, 2007

Researchers at UCLA have developed a mathematical model that mimics a particularly nasty and ongoing outbreak in the Los Angeles County Jail (LACJ) of the flesh eating bacteria Staphylococcus Aureus.

Reporting in the September issue of Nature Reviews Microbiology and currently online, Sally Blower, a professor of biomathematics at the Semel Institute for Neuroscience and Human Behavior at UCLA, and colleagues constructed a simple model of the outbreak in order to assess its severity, predict the consequences of a catastrophic outbreak in the jail, and suggest effective interventions to stop or control it.

Blower was intrigued by the outbreak in the LACJ of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA), a "super bug" that's difficult to eradicate, and easy to catch through crowded conditions and less than optimal hygiene. When someone is infected, the bug can cause illnesses that range from minor skin infections, to severe ulcers on the skin, to life-threatening diseases.

A major risk factor for CA-MRSA has been identified as incarceration. While large outbreaks have been reported in jails around the country, the researchers choose the LACJ for two reasons--it is the nation's largest jail, housing some 165,000 inmates per year and 20,000 inmates at any given time, and it has a high rate of CA-MRSA--an outbreak was first reported in 2002 and continues to this day. To date, nearly 8,500 cases have been reported in the jail, and, said Blower, "Inmates, once they are released, are spreading the pathogen throughout the community as well."

With cooperation from the LACJ, the researchers compiled information that determined booking rates or inflow, duration of stay or outflow, the rate of transmission of the bug within the jail, and the three "states" the prisoners were in while imprisoned: not infected, asymptomatic but infectious (colonized bugs living on the skin), or infected and infectious (ulcers appearing on the skin).

The researchers used the data to establish the parameters of the disease and then built a mathematical model that established the extent of the outbreak, and suggested the best way to control the pathogen.

The research showed that the LACJ outbreak is extremely large but not catastrophic, but would have become catastrophic if inmates had been incarcerated for more than two to two-and-a-half months. If catastrophic, thousands of infected inmates would have been released each month. Their model also revealed that the outbreak was sustained because of a continuous inflow of colonized and infected individuals who had picked up the bug from the community and brought it into the jail, and not from within-jail transmission.

"And that's the value of such modeling," said Blower, "because one of the things it can do is help to pinpoint where the best point is for intervention which, in this case, is at the point of inflow. This model also shows that it is very likely that jails are "hot-spots" for contributing to the spread of CA-MRSA in the community". More complex models can be developed using the simple transmission model as a platform, so that additional quantitative insight can be gained into the outbreak dynamics of such nasty pathogens.
-end-
Funding for the study was provided by the National Institutes of Health. Other authors included Emily Kajita, Justin T. Okano, Erin N. Bodine, and Scott P. Layne, all of UCLA.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services, and shape national health policy regarding neuropsychiatric disorders.

University of California - Los Angeles

Related Mathematical Model Articles from Brightsurf:

A mathematical model facilitates inventory management in the food supply chain
A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas
It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model
An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks
Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy
In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics
As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes
MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution
Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.